【題目】如圖,四邊形ABCD中,∠A=∠B90°,AB5cmAD3cm,BC2cm,PAB上一點(diǎn),若以P、A、D為頂點(diǎn)的三角形與△PBC相似,則PA_____cm

【答案】23

【解析】

根據(jù)相似三角形的判定與性質(zhì),當(dāng)若點(diǎn)A,P,D分別與點(diǎn)BC,P對應(yīng),與若點(diǎn)A,P,D分別與點(diǎn)B,PC對應(yīng),分別分析得出AP的長度即可.

解:設(shè)APxcm.則BPABAP(5x)cm

A,DP為頂點(diǎn)的三角形與以B,CP為頂點(diǎn)的三角形相似,

①當(dāng)ADPBPABC時,

,

解得x23

②當(dāng)ADBCPA+PB時,,解得x3,

∴當(dāng)AD,P為頂點(diǎn)的三角形與以B,C,P為頂點(diǎn)的三角形相似,AP的值為23

故答案為23

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ABCD,以AC為直徑的OAD于點(diǎn)E,交BC于點(diǎn)F,AB2=BFBC

1)求證:ABO相切;

2)若

求證:AC2=ABCD;

AC=3,EF=2,則AB+CD=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面內(nèi)容,并解答問題:

楊輝和他的一個數(shù)學(xué)問題

我國古代對代數(shù)的研究,特別是對方程的解法研究有著優(yōu)良的傳統(tǒng)并取得了重要成果.

楊輝,字謙光,錢塘(今浙江杭州)人,南宋杰出的數(shù)學(xué)家和數(shù)學(xué)教育家,楊輝一生留下了大量的著述,他著名的數(shù)學(xué)書共五種二十一卷,它們是:《詳解九章算法》12卷(1261年),《日用算法》2卷(1262年),《乘除通變本末》3卷(1274年,第3卷與他人合編),《田(楊輝,南宋數(shù)學(xué)家)畝比類乘除捷法》2卷(1275年),《續(xù)古摘奇算法》2卷(1275年,與他人合編),其中后三種為楊輝后期所著,一般稱之為《楊輝算法》.下面是楊輝在1275年提出的一個問題(選自楊輝所著《田畝比類乘除捷法》):

直田積(矩形面積)八百六十四步(平方步),只云闊(寬)不及長一十二步(寬比長少一十二步),問闊及長各幾步.

請你用學(xué)過的知識解決這個問題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在平面直角坐標(biāo)系中,點(diǎn)A是拋物線y=x2在第一象限上的一個點(diǎn),連結(jié)OA,過點(diǎn)AABOA,交y軸于點(diǎn)B,設(shè)點(diǎn)A的橫坐標(biāo)為n

(探究):

1)當(dāng)n=1時,點(diǎn)B的縱坐標(biāo)是  ;

2)當(dāng)n=2時,點(diǎn)B的縱坐標(biāo)是  ;

3)點(diǎn)B的縱坐標(biāo)是  (用含n的代數(shù)式表示).

(應(yīng)用):

如圖②,將OAB繞著斜邊OB的中點(diǎn)順時針旋轉(zhuǎn)180°,得到BCO

1)求點(diǎn)C的坐標(biāo)(用含n的代數(shù)式表示);

2)當(dāng)點(diǎn)A在拋物線上運(yùn)動時,點(diǎn)C也隨之運(yùn)動.當(dāng)1≤n≤5時,線段OC掃過的圖形的面積是  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知OABCBC邊的中點(diǎn),且,則________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)C、D在⊙O上,ADBC相交于點(diǎn)E.連接BD,作∠BDF=∠BAD,DFAB的延長線相交于點(diǎn)F

1)求證:DF是⊙O的切線;

2)若DFBC,求證:AD平分∠BAC;

3)在(2)的條件下,若AB10,BD6,求CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在“雙十一”購物街中,某兒童品牌玩具專賣店購進(jìn)了兩種玩具,其中類玩具的金價比玩具的進(jìn)價每個多元.經(jīng)調(diào)查發(fā)現(xiàn):用元購進(jìn)類玩具的數(shù)量與用元購進(jìn)類玩具的數(shù)量相同.

1)求的進(jìn)價分別是每個多少元?

2)該玩具店共購進(jìn)了兩類玩具共個,若玩具店將每個類玩具定價為元出售,每個類玩具定價元出售,且全部售出后所獲得的利潤不少于元,則該淘寶專賣店至少購進(jìn)類玩具多少個?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,在平面直角坐標(biāo)系中,直線AB分別與x軸、y軸交于A、B兩點(diǎn)(OAOB),且OA、OB的長分別是一元二次方程x2-18x+72=0的兩根,點(diǎn)D為線段OB的中點(diǎn),過點(diǎn)DAB的垂線與線段AB相交于點(diǎn)C

(1)AB兩點(diǎn)的坐標(biāo);

(2)求過點(diǎn)C的反比例函數(shù)解析式;

(3)已知點(diǎn)P在直線AD上,在平面內(nèi)是否存在點(diǎn)Q,使以A、OP、Q為頂點(diǎn)的四邊形為菱形?若存在,請直接寫出點(diǎn)Q坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于二、四象限內(nèi)的AB兩點(diǎn),與x軸交于C點(diǎn),點(diǎn)A的坐標(biāo)為(- 3,4),點(diǎn)B的坐標(biāo)為(6,n).

(1)求該反比例函數(shù)和一次函數(shù)的解析式;

(2)連接OB,求△AOB 的面積;

(3)在x軸上是否存在點(diǎn)P,使△APC是直角三角形. 若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案