【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于二、四象限內(nèi)的A、B兩點(diǎn),與x軸交于C點(diǎn),點(diǎn)A的坐標(biāo)為(- 3,4),點(diǎn)B的坐標(biāo)為(6,n).

(1)求該反比例函數(shù)和一次函數(shù)的解析式;

(2)連接OB,求△AOB 的面積;

(3)在x軸上是否存在點(diǎn)P,使△APC是直角三角形. 若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】(1)反比例函數(shù)的解析式為y=﹣ ; 一次函數(shù)的解析式為y=﹣x+2 2;(3)存在,滿足條件的P點(diǎn)坐標(biāo)為(﹣3,0)、(﹣,0).

【解析】試題分析:1)先把代入得到的值,從而確定反比例函數(shù)的解析式為;再利用反比例函數(shù)解析式確定B點(diǎn)坐標(biāo)為,然后運(yùn)用待定系數(shù)法確定所求的一次函數(shù)的解析式為

即可求得.
3)過A點(diǎn)作軸于 x軸于,則點(diǎn)的坐標(biāo)為;再證明利用相似比計(jì)算出,所以點(diǎn)的坐標(biāo)為,于是得到滿足條件的P點(diǎn)坐標(biāo).

試題解析:

代入,得

∴反比例函數(shù)的解析式為;

代入,得

解得

分別代入,

解得

∴所求的一次函數(shù)的解析式為

2)當(dāng)時(shí), 解得:

3)存在.

A點(diǎn)作軸于, x軸于如圖,

點(diǎn)坐標(biāo)為

點(diǎn)的坐標(biāo)為

點(diǎn)的坐標(biāo)為

∴滿足條件的點(diǎn)坐標(biāo)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,∠A=∠B90°,AB5cm,AD3cm,BC2cmPAB上一點(diǎn),若以P、A、D為頂點(diǎn)的三角形與△PBC相似,則PA_____cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知的半徑為,,的兩條弦,,,則弦之間的距離是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是直經(jīng),D的中點(diǎn),DEACAC的延長(zhǎng)線于E,O的切線BFAD的延長(zhǎng)線于點(diǎn)F

1)求證:DEO的切線.

2)試探究AE,AD,AB三者之間的等量關(guān)系.

3)若DE=3,O的半徑為5,求BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,∠B30°BC6,點(diǎn)DBC邊上一動(dòng)點(diǎn)(不與B、C重合),過點(diǎn)DDEBCAB邊于點(diǎn)E,將∠B沿直線DE翻折,點(diǎn)B落在射線BC上的點(diǎn)F處,當(dāng)AEF為直角三角形時(shí),BD的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A是反比例函數(shù)y 在第一象限圖象上一點(diǎn),連接OA,過點(diǎn)AABx軸(點(diǎn)B在點(diǎn)A右側(cè)),連接OB,若OB平分∠AOX,且點(diǎn)B的坐標(biāo)是(8,4),則k的值是( 。

A.6B.8C.12D.16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,BDO的直徑,點(diǎn)ACO上并位于BD的兩側(cè),∠ABC45°,連結(jié)CD、OA并延長(zhǎng)交于點(diǎn)F,過點(diǎn)CO的切線交BD延長(zhǎng)線于點(diǎn)E

1)求證:∠F=∠ECF;

2)當(dāng)DF6,tanEBC,求AF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,將腰CD以D為中心逆時(shí)針旋轉(zhuǎn)90°至DE,連接AE、CE,△ADE的面積為3,則BC的長(zhǎng)為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BD是菱形ABCD的對(duì)角線.

1)請(qǐng)用直尺和圓規(guī)作AB的垂直平分線EF,垂足為點(diǎn)E,交AD于點(diǎn)F;(不要求寫作法,保留作圖痕跡)

2)在(1)的條件下,連接BF,若∠CBD=75°,求∠DBF的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案