【題目】如圖,點A在反比例函數(shù)y=(x>0)上,以OA為邊作正方形OABC,邊AB交y軸于點P,若PA:PB=1:2,則正方形OABC的面積=_____.
【答案】10.
【解析】
根據(jù)題意作出合適的輔助線,然后根據(jù)正方形的性質(zhì)和反比例函數(shù)的性質(zhì),相似三角形的判定和性質(zhì)、勾股定理可以求得AB的長.
由題意可得:OA=AB,設(shè)AP=a,則BP=2a,OA=3a,設(shè)點A的坐標(biāo)為(m,),作AE⊥x軸于點E.
∵∠PAO=∠OEA=90°,∠POA+∠AOE=90°,∠AOE+∠OAE=90°,∴∠POA=∠OAE,∴△POA∽△OAE,∴=,即=,解得:m=1或m=﹣1(舍去),∴點A的坐標(biāo)為(1,3),∴OA=,∴正方形OABC的面積=OA2=10.
故答案為:10.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,AB=3,BC=4,動點P從點A出發(fā)沿AC向終點C運動,同時動點Q從點B出發(fā)沿BA向點A運動,到達A點后立刻以原來的速度沿AB返回.點P,Q的運動速度均為每秒1個單位長度,當(dāng)點P到達點C時停止運動,點Q也同時停止運動,連接PQ,設(shè)它們的運動時間為t(t>0)秒.
(1)設(shè)△CBQ的面積為S,請用含有t的代數(shù)式來表示S;
(2)線段PQ的垂直平分線記為直線l,當(dāng)直線l經(jīng)過點C時,求AQ的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】青少年是祖國的未來,增強青少年體質(zhì),促進青少年健康成長,是關(guān)系國家和民族未來的大事,為了響應(yīng)“足球進校園”的號召,我市某中學(xué)準(zhǔn)備購買一批足球,若購買2個A品牌足球和3個B品牌足球共需340元;購買5個A品牌足球和2個B品牌足球共需410元.
(1)購買一個A品牌足球,一個B品牌足球各需多少元?
(2)根據(jù)學(xué)校的實際情況,需購買兩種品牌足球共50個,并且總費用不超過3120元,問最多可以購買多少個B品牌足球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人以各自的交通工具、相同路線,前往距離單位10km的培訓(xùn)中心參加學(xué)習(xí).圖中l甲、l乙分別表示甲、乙前往目的地所走的路程S(km)隨時間t(分)變化的函數(shù)圖象.以下說法:①乙比甲提前12分鐘到達;②乙走了8km后遇到甲;③乙出發(fā)6分鐘后追上甲;④甲走了28分鐘時,甲乙相距3km.其中正確的是( )
A. 只有① B. ①③ C. ②③④ D. ①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,二次函數(shù)y=ax2﹣2ax﹣3a(a<0)的圖象與x軸交于A、B兩點(點A在點B的右側(cè)),與y軸的正半軸交于點C,頂點為D.
(1)求頂點D的坐標(biāo)(用含a的代數(shù)式表示);
(2)若以AD為直徑的圓經(jīng)過點C.
①求拋物線的函數(shù)關(guān)系式;
②如圖2,點E是y軸負半軸上一點,連接BE,將△OBE繞平面內(nèi)某一點旋轉(zhuǎn)180°,得到△PMN(點P、M、N分別和點O、B、E對應(yīng)),并且點M、N都在拋物線上,作MF⊥x軸于點F,若線段MF:BF=1:2,求點M、N的坐標(biāo);
③點Q在拋物線的對稱軸上,以Q為圓心的圓過A、B兩點,并且和直線CD相切,如圖3,求點Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線l1:y=kx+b 經(jīng)過點A(﹣,0)和點B(2,5).
(1)求直線l1與y軸的交點坐標(biāo);
(2)若點C(a,a+2)與點D在直線l1上,過點D的直線l2與x軸正半軸交于點 E,當(dāng)AC=CD=CE 時,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,點E是AD的中點,連接BE,BF平分∠EBC交CD于點F,交AC于點G,將△CGF沿直線GF折疊至△C′GF,BD與△C′GF相交于點M、N,連接CN,若AB=6,則四邊形CNC′G的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABO中,斜邊AB=1,若OC∥BA,∠AOC=36°,則( 。
A. 點B到AO的距離為sin54°
B. 點A到OC的距離為sin36°sin54°
C. 點B到AO的距離為tan36°
D. 點A到OC的距離為cos36°sin54°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C、E和B、D、F分別在∠GAH的兩邊上,且AB=BC=CD=DE=EF,若∠A=18°,則∠GEF的度數(shù)是( )
A. 80° B. 90° C. 100° D. 108°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com