如圖1,已知直線l1∥l2,直線l和直線l1、l2交于點(diǎn)C和D,在直線l有一點(diǎn)P,

(1)若P點(diǎn)在C、D之間運(yùn)動(dòng)時(shí),問∠PAC,∠APB,∠PBD之間的關(guān)系是否發(fā)生變化,并說(shuō)明理由.
(2)若點(diǎn)P在C、D兩點(diǎn)的外側(cè)運(yùn)動(dòng)時(shí)(P點(diǎn)與點(diǎn)C、D不重合,如圖2和3),試直接寫出∠PAC,∠APB,∠PBD之間的關(guān)系,不必寫理由.
考點(diǎn):平行線的性質(zhì)
專題:
分析:(1)當(dāng)P點(diǎn)在C、D之間運(yùn)動(dòng)時(shí),首先過(guò)點(diǎn)P作PE∥l1,由l1∥l2,可得PE∥l2∥l1,根據(jù)兩直線平行,內(nèi)錯(cuò)角相等,即可求得:∠APB=∠PAC+∠PBD.
(2)當(dāng)點(diǎn)P在C、D兩點(diǎn)的外側(cè)運(yùn)動(dòng)時(shí),由直線l1∥l2,根據(jù)兩直線平行,同位角相等與三角形外角的性質(zhì),即可求得:∠PBD=∠PAC+∠APB.
解答:解:(1)如圖①,當(dāng)P點(diǎn)在C、D之間運(yùn)動(dòng)時(shí),∠APB=∠PAC+∠PBD.
理由如下:
過(guò)點(diǎn)P作PE∥l1
∵l1∥l2,
∴PE∥l2∥l1,
∴∠PAC=∠1,∠PBD=∠2,
∴∠APB=∠1+∠2=∠PAC+∠PBD;

(2)如圖2,當(dāng)點(diǎn)P在C、D兩點(diǎn)的外側(cè)運(yùn)動(dòng),且在l2下方時(shí),∠PAC=∠PBD+∠APB.
理由如下:
∵l1∥l2,
∴∠PED=∠PAC,
∵∠PED=∠PBD+∠APB,
∴∠PAC=∠PBD+∠APB.
如圖3,當(dāng)點(diǎn)P在C、D兩點(diǎn)的外側(cè)運(yùn)動(dòng),且在l1上方時(shí),∠PBD=∠PAC+∠APB.
理由如下:
∵l1∥l2
∴∠PEC=∠PBD,
∵∠PEC=∠PAC+∠APB,
∴∠PBD=∠PAC+∠APB.
點(diǎn)評(píng):本題主要考查平行線的性質(zhì)與三角形外角的性質(zhì).此題難度適中,解題的關(guān)鍵是掌握:兩直線平行,內(nèi)錯(cuò)角相等與兩直線平行,同位角相等,注意輔助線的作法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x的一元二次方程2x2-3x+k=0的一根是1.求另一根及k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在一塊長(zhǎng)為a米,寬為b米的長(zhǎng)方形草地上,修建兩條寬為2米的甬道.
(1)求修好甬道后剩下的草地面積.
(2)當(dāng)a=100,b=80時(shí),剩下的草地面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,矩形ABCD中,AC、BD相交于O,AE平分∠BAD交BC于E,若∠CAE=15°,求∠BOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,拋物線y=-
1
3
x2+3
與x軸交于點(diǎn)A和點(diǎn)B.
(1)求AB的長(zhǎng);
(2)若點(diǎn)P在拋物線上,且點(diǎn)C的橫坐標(biāo)為1,連接AC、BC,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在Rt△ABC中,AB=6cm,BC=8cm,請(qǐng)求出AC邊的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:(2013-π)0•(-
2
3
)-2
=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)圓錐的側(cè)面展開圖是圓心角為120°、半徑為15cm的扇形,則圓錐的底面半徑為
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(0.2)2014×52013=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案