如圖,在直角梯形OABC中,OA、OC邊所在直線與x、y軸重合,BCOA,點B的坐標(biāo)為(6. 4,4. 8),對角線OBOA.在線段OA、AB上有動點E、D,點E以每秒2厘米的速度在線段OA上從點O向點A勻速運(yùn)動,同時點D以每秒1厘米的速度在線段AB上從點A向點B勻速運(yùn)動.當(dāng)點E到達(dá)點A時,點D同時停止運(yùn)動.設(shè)點E的運(yùn)動時間為t(秒),

(1)求線段AB所在直線的解析式;

(2)設(shè)四邊形OEDB的面積為y,求y關(guān)于t的函數(shù)關(guān)系式,并寫出自變量的t的取值范圍;

(3)在運(yùn)動過程中,存不存在某個時刻,使得以A、E、D為頂點的三角形與△ABO相似,若存在求出這個時刻t,若不存在,說明理由.

(1)過點BBHOA,垂足為點H

∵∠COA=90°.BCOA∴∠BCO=90°

∴四邊形COHB是矩形∴BH=CO,BC=OH

B(6. 4,4. 8)∴OH=6. 4,BH=4. 8

………………………………………………………………2分

OBBA∴∠OBA=90°

∴∠OBA=∠OHB=90°

∵∠BOH=∠AOB

∴△BOH∽△BOA

OB2=AO·OH

∴82=OA·6. 4,OA=10    …………………………………………………………3分

AB=

A(10,0),設(shè)直線AB的解析式為

解得k=,

  ……………………………………………………………………4分

(2)過點DDFOA,垂足為F.

DFBH

∴△ADF∽△ABH

,,DF=0. 8   ……………………………………………5分

OE=2t,AE=10-2t

(0<t≤5)………………………………………………………7分

(3)①∠ADE=90°∠BAO=∠DAE

當(dāng)時,△ADE∽△ABO

解得 ………………………………………………………………9分

②∠AED=90°∵∠OAB=∠DAE

當(dāng)時△AED∽△ABO

解得  ……………………………………………………10分

∴當(dāng)秒時,以AE、D為頂點的三角形與△ABO相似………11分

【相關(guān)知識點】三角形相似,一次函數(shù)、二次函數(shù),一元一次方程

【解題思路】將動點靜止在某一時刻,轉(zhuǎn)化為相關(guān)三角形的知識求解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角梯形OABC中,OA∥CB,A、B兩點的坐標(biāo)分別為A(15,0),B(10,12),動點P、Q分別從O、B兩點出發(fā),點P以每秒2個單位的速度沿OA向終點A運(yùn)動,點Q以每秒1個單位的速度沿BC向C運(yùn)動,當(dāng)點P停止運(yùn)動時,點Q也同時停止運(yùn)動.線段OB、PQ相交于點D,過點D作DE∥OA,交AB于點E,射線QE交x軸于點F.設(shè)動點PQ運(yùn)精英家教網(wǎng)動時間為t(單位:秒).
(1)當(dāng)t為何值時,四邊形PABQ是等腰梯形,請寫出推理過程;
(2)當(dāng)t=2秒時,求梯形OFBC的面積;
(3)當(dāng)t為何值時,△PQF是等腰三角形?請寫出推理過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角梯形COAB中,CB∥OA,以O(shè)為原點建立直角坐標(biāo)系,A、C的坐標(biāo)分別為A精英家教網(wǎng)(10,0)、C(0,8),CB=4,D為OA中點,動點P自A點出發(fā)沿A→B→C→O的線路移動,速度為1個單位/秒,移動時間為t秒.
(1)求AB的長,并求當(dāng)PD將梯形COAB的周長平分時t的值,并指出此時點P在哪條邊上;
(2)動點P在從A到B的移動過程中,設(shè)△APD的面積為S,試寫出S與t的函數(shù)關(guān)系式,并指出t的取值范圍;
(3)幾秒后線段PD將梯形COAB的面積分成1:3的兩部分?求出此時點P的坐標(biāo)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角梯形OABC中,OA、OC邊所在直線與x、y軸重合,BC∥OA,點B的坐標(biāo)為(6.4,4.8),對角線OB⊥OA.在線段OA、AB上有動點E、D,點E以每秒2厘米的速度在線段OA上從點O向點A勻速運(yùn)動,同時點D以每秒1厘米的速度在線段AB上從點A向點B勻速運(yùn)動.當(dāng)點E到達(dá)點A時,點D同時停止運(yùn)動.設(shè)點E的運(yùn)動時間為t(秒),
(1)求線段AB所在直線的解析式;
(2)設(shè)四邊形OEDB的面積為y,求y關(guān)于t的函數(shù)關(guān)系式,并寫出自變量的t的取值范圍;
(3)在運(yùn)動過程中,存不存在某個時刻,使得以A、E、D為頂點的三角形與△ABO相似,若存在求出這個時刻t,若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•湛江模擬)已知,如圖,在直角梯形COAB中,CB∥OA,以O(shè)為原點建立平面直角坐標(biāo)系,A、B、C的坐標(biāo)分別為A(10,0)、B(4,8)、C(0,8),D為OA的中點,動點P自A點出發(fā)沿A→B→C→O的路線移動,速度為每秒1個單位,移動時間記為t秒.
(1)求過點O、B、A三點的拋物線的解析式;
(2)求AB的長;若動點P在從A到B的移動過程中,設(shè)△APD的面積為S,寫出S與t的函數(shù)關(guān)系式,并指出自變量t的取值范圍;
(3)動點P從A出發(fā),幾秒鐘后線段PD將梯形COAB的面積分成1:3兩部分?求出此時P點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角梯形OABC中,AB∥OC,BC⊥x軸于點C,A(1,2),C(3,0).動點P從O點出發(fā),沿x軸正方向以每秒1個單位長度的速度移動.過P點作PQ⊥直線OA,垂足為Q.設(shè)P點移動的時間為t秒(0<t≤7),△OPQ與直角梯形OABC重疊部分的面積為S.
(1)寫出點B的坐標(biāo):
(3,2)
(3,2)
;
(2)當(dāng)t=7時,求直線PQ的解析式,并判斷點B是否在直線PQ上;
(3)求S關(guān)于t的函數(shù)關(guān)系式;
(4)連接AC.是否存在t,使得PQ分△ABC的面積為1:3?若存在,直接寫出t的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案