【題目】如圖1,點是正方形的中心,點是邊上一動點,在上截取,連結,.初步探究:在點的運動過程中:
(1)猜想線段與的關系,并說明理由.
深入探究:
(2)如圖2,連結,過點作的垂線交于點.交的延長線于點.延長交的延長線于點.
①直接寫出的度數(shù).
②若,請?zhí)骄?/span>的值是否為定值,若是,請求出其值;反之,請說明理由
【答案】(1)EO⊥FO,EO=FO;理由見解析;(2)①;②=2
【解析】
(1)由正方形的性質(zhì)可得BO=CO,∠ABO=∠ACB=45°,∠BOC=90°,由“SAS”可證△BEO≌△CFO,可得OE=OF,∠BOE=∠COF,可證EO⊥FO;
(2)①由等腰直角三角形的性質(zhì)可得∠EOG的度數(shù);
②由∠EOF=∠ABF=90°,可得點E,點O,點F,點B四點共圓,可得∠EOB=∠BFE,通過證明△BOH∽△BIO,可得,即可得結論.
解:(1)OE=OF,OE⊥OF,連接AC,BD,
∵點O是正方形ABCD的中心
∴點O是AC,BD的交點
∴BO=CO,∠ABO=∠ACB=45°,∠BOC=90°
∵CF=BE,∠ABO=∠ACB,BO=CO,
∴△BEO≌△CFO(SAS)
∴OE=OF,∠BOE=∠COF
∵∠COF+∠BOF=90°,
∴∠BOE+∠BOF=90°
∴∠EOF=90°,
∴EO⊥FO.
(2)
①∵OE=OF,OE⊥OF,
∴△EOF是等腰直角三角形,OG⊥EF
∴∠EOG=45°
②BHBI的值是定值,
理由如下:
如圖,連接DB,
∵AB=BC=CD=2
∴BD=2,
∴BO=
∵∠AOB=∠COB=45°,∠HBE=∠GBI=90°
∴∠HBO=∠IBO=135°
∵∠EOF=∠ABF=90°
∴點E,點O,點F,點B四點共圓
∴∠EOB=∠BFE,
∵EF⊥OI,AB⊥HF
∴∠BEF+∠BFE=90°,∠BEF+∠EIO=90°
∴∠BFE=∠BIO,
∴∠BOE=∠BIO,且∠HBO=∠IBO
∴△BOH∽△BIO
∴
∴BHBI=BO2=2
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD的對角線AC,BD相交于點O,點E,F(xiàn)在BD上,BE=DF.
(1)求證:AE=CF;
(2)若AB=6,∠COD=60°,求矩形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在“宏揚傳統(tǒng)文化,打造書香校園”活動中,學校計劃開展四項活動:“A﹣國學誦讀”、“B﹣演講”、“C﹣課本劇”、“D﹣書法”,要求每位同學必須且只能參加其中一項活動,學校為了了解學生的意愿,隨機調(diào)查了部分學生,結果統(tǒng)計如下:
(1)如圖,希望參加活動C占20%,希望參加活動B占15%,則被調(diào)查的總人數(shù)為 人,扇形統(tǒng)計圖中,希望參加活動D所占圓心角為 度,根據(jù)題中信息補全條形統(tǒng)計圖.
(2)學校現(xiàn)有800名學生,請根據(jù)圖中信息,估算全校學生希望參加活動A有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】反比例函數(shù)y1=(x>0)的圖象與一次函數(shù)y2=﹣x+b的圖象交于A,B兩點,其中A(1,2)
(1)求這兩個函數(shù)解析式;
(2)在y軸上求作一點P,使PA+PB的值最小,并直接寫出此時點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,點E,F分別在BC,CD上,三角形AEF是等邊三角形,連接AC交EF于G,下列結論:①BE=DF,②AG=2GC,③BE+DF=EF,④S△CEF=2S△ABE正確的有_____(只填序號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店將進價為8元的商品按每件10元售出,每天可售出200件,現(xiàn)在采取提高商品售價減少銷售量的辦法增加利潤,如果這種商品每件的銷售價每提高0.5元其銷售量就減少10件,問應將每件售價定為多少元時,才能使每天利潤為640元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知中,,為邊上一點,為上一點,,設,
(1)若,,則__________;__________;若,,則__________;__________;
(2)由此猜想與的關系,并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個點從數(shù)軸上的原點開始,先向右移動1個單位長度,再向左移動2個單位長度,再向右移動3個單位長度,再向左移動4個單位長度,……,移動2019次后,該點所對應的數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知△ABC的三個頂點坐標分別是A(1,1),B(4,1),C(3,3).
(1)將△ABC向下平移5個單位后得到△A1B1C1,請畫出△A1B1C1;
(2)將△ABC繞原點O逆時針旋轉90°后得到△A2B2C2,請畫出△A2B2C2;
(3)判斷以O,A1,B為頂點的三角形的形狀.(無須說明理由)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com