已知:如圖,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點C、D、E三點在同一直線上,連接BD.
求證:(1)△BAD≌△CAE;(2)試猜想BD、CE有何特殊位置關(guān)系,并證明.
【考點】全等三角形的判定與性質(zhì).
【專題】證明題;探究型.
【分析】要證(1)△BAD≌△CAE,現(xiàn)有AB=AC,AD=AE,需它們的夾角∠BAD=∠CAE,而由∠BAC=∠DAE=90°很易證得.(2)BD、CE有何特殊位置關(guān)系,從圖形上可看出是垂直關(guān)系,可向這方面努力.要證BD⊥CE,需證∠BDE=90°,需證∠ADB+∠ADE=90°可由直角三角形提供.
【解答】(1)證明:∵∠BAC=∠DAE=90°
∴∠BAC+∠CAD=∠DAE+CAD
即∠BAD=∠CAE,
又∵AB=AC,AD=AE,
∴△BAD≌△CAE(SAS).
(2)BD、CE特殊位置關(guān)系為BD⊥CE.
證明如下:由(1)知△BAD≌△CAE,
∴∠ADB=∠E.
∵∠DAE=90°,
∴∠E+∠ADE=90°.
∴∠ADB+∠ADE=90°.
即∠BDE=90°.
∴BD、CE特殊位置關(guān)系為BD⊥CE.
【點評】本題考查了全等三角形的判定和性質(zhì);全等問題要注意找條件,有些條件需在圖形是仔細觀察,認真推敲方可.做題時,有時需要先猜后證.
科目:初中數(shù)學 來源: 題型:
.如圖,一艘海輪位于燈塔P的南偏東70°方向的M處,它以每小時40海里的速度向正北方向航行,2小時后到達位于燈塔P的北偏東40°的N處,則N處與燈塔P的距離為( )
A.40海里 B.60海里 C.70海里 D.80海里
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
在如圖所示的直角坐標系中,每個小方格都是邊長為1的正方形,△ABC的頂點均在格點上,點A的坐標是(﹣3,﹣1).
(1)將△ABC沿y軸正方向平移3個單位得到△A1B1C1,畫出△A1B1C1,并寫出點B1坐標;
(2)畫出△A1B1C1關(guān)于y軸對稱的△A2B2C2,并寫出點C2的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
已知MN是線段AB的垂直平分線,下列說法正確的是( )
A.與AB距離相等的點在MN上
B.與點A和點B距離相等的點在MN上
C.與MN距離相等的點在AB上
D.AB垂直平分MN
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com