【題目】如圖,在RtABC中,∠BAC90°,DBC的中點,EAD的中點,過點AAFBCBE的延長線于點F

1)求證:四邊形ADCF是菱形;

3)若AC5,AB6,求菱形ADCF的面積.

【答案】(1)證明見解析;(2)15.

【解析】

1)可先證得△AEF≌△DEB,可求得AF=DB,可證得四邊形ADCF為平行四邊形,再利用直角三角形的性質(zhì)可求得AD=CD,可證得結論;

2)根據(jù)條件可證得S菱形ADCF=SABC,結合條件可求得答案.

1)證明:∵EAD的中點,

AEDE,

AFBC,

∠AFE∠DBE,

△AEF△DEB

,

△AEF≌△DEBAAS),

AFDB

∵點DBC中點,

BD=DC

AF=DC,

AFBC,

∴四邊形ADCF是平行四邊形,

∠BAC90°,DBC的中點,

ADCDBC,

∴四邊形ADCF是菱形;

2)解:設AFCD的距離為h,

AFBCAFBDCD,∠BAC90°,

S菱形ADCFCDhBCh=SABC,

SABCABAC

S菱形ADCF15.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A在雙曲線yk≠0)的第一象限的分支上,AB垂直y軸于點B,點Cx軸正半軸上,OC2AB,點E在線段AC上,且AE3EC,點DOB的中點,連接CD,若CDE的面積為1,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在△ABC中,AB=AC=10,BC=16,點DBC邊上的動點(D不與點B,C重合).以D為頂點作∠ADE=B,射線DEAC邊于點E,過點AAFAD交射線DE于點F,連接CF

1)求證:△ABD∽△DCE;

2)當DEAB(如圖2),求AE的長;

3)點DBC邊上運動的過程中,是否存在某個位置,使得DF=CF?若存在,求出此時BD的長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一副三角尺(在中,,,在中,,)如圖擺放,點的中點,于點,經(jīng)過點,將繞點順時針方向旋轉),于點于點,則的值為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A點的坐標為(a,6),ABx軸于點B=,反比例函數(shù)y=的圖象的一支分別交AOAB于點C、D.延長AO交反比例函數(shù)的圖象的另一支于點E.已知點D的縱坐標為

1)求反比例函數(shù)的解析式及點E的坐標;

2)連接BC,求SCEB

3)若在x軸上的有兩點Mm,0N-m0).

①以E、M、C、N為頂點的四邊形能否為矩形?如果能求出m的值,如果不能說明理由.

②若將直線OAO點旋轉,仍與y=交于C、E,能否構成以E、M、CN為頂點的四邊形為菱形,如果能求出m的值,如果不能說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與實踐:

概念理解:將△ABC 繞點 A 按逆時針方向旋轉,旋轉角記為 θ0°≤θ90°),并使各邊長變?yōu)樵瓉淼?/span> n 倍,得到△AB′C′,如圖,我們將這種變換記為[θn],

問題解決:(2)如圖,在△ABC 中,∠BAC=30°,∠ACB=90°,對△ABC 作變換[θ,n]得到△AB′C′,使點 BC,C′在同一直線上,且四邊形 ABBC′為矩形,求 θ n 的值.

拓廣探索:(3)在△ABC 中,∠BAC=45°,∠ACB=90°,對△ABC作變換 得到△AB′C′,則四邊形 ABB′C′為正方形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某賓館有50個房間供游客住宿,當每個房間的房價為每天180元時,房間會全部住滿.當每個房間 每天的房價每增加10元時,就會有一個房間空閑.賓館需對游客居住的每個房間每天支出20元的各種費用.根據(jù)規(guī)定,每個房間每天的房價不得高于340元.設每個房間的房價增加x元(x10的正整數(shù)倍).

1)設一天訂住的房間數(shù)為y,直接寫出yx的函數(shù)關系式及自變量x的取值范圍;

2)設賓館一天的利潤為w元,求wx的函數(shù)關系式;

3)一天訂住多少個房間時,賓館的利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC,∠ACB90°,∠CAB30°,以線段AB為邊向外作等邊△ABD,E是線段AB的中點,連接CE并延長交線段AD于點F

1)求證四邊形BCFD為平行四邊形;

2)若AB6,求平行四邊形BCFD的面積

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若一個等腰三角形的三邊長均滿足方程x2-6x+8=0,則此三角形的周長為______

查看答案和解析>>

同步練習冊答案