【題目】有一個拋物線形的拱形橋洞,橋面離水面的距離為5.6米,橋洞離水面的最大高度為,跨度為,如圖所示,把它的圖形放在直角坐標(biāo)系中.
(1)求這條拋物線所對應(yīng)的函數(shù)關(guān)系式.
(2)如圖,在對稱軸右邊處,橋洞離橋面的高是多少?
【答案】(1)二次函數(shù)解析式為;(2)橋洞離橋面的高是1.76米.
【解析】
(1)由題意可知拋物線的頂點坐標(biāo),設(shè)函數(shù)關(guān)系式為y=a(x-5)2+4,將已知坐標(biāo)代入關(guān)系式求出a的值.
(2)對稱軸右邊1米處即x=6,代入解析式求出y=值.
解:(1)由題意可知,拋物線的頂點坐標(biāo)為,
所以設(shè)此橋洞所對應(yīng)的二次函數(shù)關(guān)系式為,
由圖象知該函數(shù)過原點,將代入上式,得:,
解得,
故該二次函數(shù)解析式為,
(2)對稱軸右邊1米處即,此時,
因此橋洞離橋面的高米.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD,∠A=60°,AB=6,點E,F(xiàn)分別是AB,BC邊上沿某一方向運動的點,且DE=DF,當(dāng)點E從A運動到B時,線段EF的中點O運動的路程為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下列條件,求二次函數(shù)的解析式.
(1)圖象經(jīng)過(0,1),(1,﹣2),(2,3)三點;
(2)圖象的頂點(2,3),且經(jīng)過點(3,1);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA、PB是⊙O的切線,切點分別是A、B,直線EF也是⊙O的切線,切點為Q,交PA、PB于點E、F,已知PA=12cm,∠P=40°
(1)求△PEF的周長.
(2)求∠EOF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與軸交于點和點(點在點的左側(cè)),與軸的交點為.
(1)求點和點的坐標(biāo);
(2)若點為拋物線上一點,且,求點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A(1,a)是反比例函數(shù)的圖象上一點,直線與反比例函數(shù)的圖象在第四象限的交點為點B.
(1)求直線AB的解析式;
(2)動點P(x,0)在x軸的正半軸上運動,當(dāng)線段PA與線段PB之差達到最大時,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,已知線段和直線,用直尺和圓規(guī)在上作出所有的點,使得,如圖②,小明的作圖方法如下:
第一步:分別以點,為圓心,長為半徑作弧,兩弧在上方交于點;
第二步:連接,;
第三步:以為圓心,長為半徑作,交于,;
所以圖中,即為所求的點.
(1)在圖②中,連接,,說明;
(方法遷移)
(2)如圖③,用直尺和圓規(guī)在矩形內(nèi)作出所有的點,使得(不寫作法,保留作圖痕跡).
(深入探究)
(3)已知矩形,,,為邊上的點,若滿足的點恰有兩個,求的取值范圍.
(4)已知矩形,,,為矩形內(nèi)一點,且,若點繞點逆時針旋轉(zhuǎn)到點,求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】張華為體育測試做準(zhǔn)備,每天爬家對面的翠山,張華從西坡沿坡角為35°的山坡爬了2000米,緊接著又爬了坡角為45°的山坡800米,最后到達山頂;請你計算翠山的高度.(結(jié)果精確到個位,參考數(shù)據(jù):.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com