【題目】如圖,在△ABC中,AB=BC,∠ABC=90°,BM是AC邊上的中線,點D,E分別在邊AC和BC上,DB=DE,DE與BM相交于點N,EF⊥AC于點F,以下結(jié)論:
①∠DBM=∠CDE;②S△BDE<S四邊形BMFE;③CD·EN=BN·BD;④AC=2DF.
其中正確結(jié)論的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
【答案】C
【解析】試題分析:由AB=BC,∠ABC=90°,BM是AC邊中線可知△ABC、△ABM、△CBM都是等腰直角三角形,因為DB=DE,所以對應兩個底角相等.(1)∵∠DEB=∠EDC+∠C=∠EDC+45°(三角形外角性質(zhì)),∴∠EDC=∠DEB-45°,因為∠DBE=∠DBM+∠MBE=∠DBM+45°,所以∠DBM=∠DBE-45°,而∠DBE=∠DEB,∴∠DBM=∠CDE,故(1)正確.(2)先證明△BDM≌△DEF,∵∠DBM=∠EDF(已證),∠DMB=∠EFD=90°,DB=DE,∴Rt△BDM≌Rt△DEF.∴S△BDM=S△DEF.∴S△BDM﹣S△DMN=S△DEF﹣S△DMN,即S△DBN=S四邊形MNEF.∴S△DBN+S△BNE=S四邊形MNEF+S△BNE,即S△BDE=S四邊形BMFE,故(2)錯誤;(3)由所給CDEN=BNBD,化成比例式:CD:BD=BN:EN,所以只要能證明△DBC∽△NEB即可.∵∠BNE=∠DBM+∠BDN(三角形外角性質(zhì)),∠BDM=∠BDE+∠EDF,∠EDF=∠DBM,∴∠BNE=∠BDM.即∠BNE=∠BDC,又∵∠C=∠NBE=45°,∴△DBC∽△NEB.∴對應線段成比例CD:BD=BN:EN,化成乘積式即得CDEN=BNBD,故(3)正確;(4)把所給線段進行轉(zhuǎn)換:∵Rt△BDM≌Rt△DEF,∴BM=DF,∵BM是等腰直角三角形ABC斜邊AC中線,∴BM=AC,∴DF=AC,∴AC=2DF.故(4)正確.綜上所述,選項中有三個正確,故選C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在中,.動點從的頂點出發(fā),以的速度沿勻速運動回到點.圖2是點運動過程中,線段的長度隨時間變化的圖象.其中點為曲線部分的最低點.
請從下面A、B兩題中任選一作答,我選擇________題.
A.的面積是______,B.圖2中的值是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,為了躲避臺風,一輪船一直由西向東航行,上午點,在處測得小島的方向是北偏東,以每小時海里的速度繼續(xù)向東航行,中午點到達處,并測得小島的方向是北偏東,若小島周圍海里內(nèi)有暗礁,問該輪船是否能一直向東航行?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OACB的頂點O是坐標原點,頂點A、B分別在x軸、y軸的正半軸上,OA=3,OB=4,D為邊OB的中點.若E為邊OA上的一個動點,當△CDE的周長最小時,則點E的坐標____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】新春佳節(jié),電子鞭炮因其安全、無污染開始走俏.某商店經(jīng)銷一種電子鞭炮,已知這種電子鞭炮的成本價為每盒80元,市場調(diào)查發(fā)現(xiàn),該種電子鞭炮每天的銷售量y(盒)與銷售單價x(元)有如下關(guān)系:y=﹣2x+320(80≤x≤160).設這種電子鞭炮每天的銷售利潤為w元.
(1)求w與x之間的函數(shù)關(guān)系式;
(2)該種電子鞭炮銷售單價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?
(3)該商店銷售這種電子鞭炮要想每天獲得2400元的銷售利潤,又想買得快.那么銷售單價應定為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象相交于A(2,3),B(﹣3,n)兩點.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)所給條件,請直接寫出不等式kx+b>的解集;
(3)過點B作BC⊥x軸,垂足為C,求S△ABC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a、b、c都是常數(shù),且a≠0)的圖象與x軸交于點(﹣2,0)、(x1,0),且1<x1<2,與y軸的正半軸的交點在(0,2)的下方,下列結(jié)論:①4a﹣2b+c=0;②a<b<0;③2a+c>0;④2a﹣b+1>0.其中正確結(jié)論的個數(shù)是( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了弘揚學生愛國主義精神,充分展現(xiàn)新時期青少年良好的思想道德素質(zhì)和精神風貌,豐富學生的校園生活,陶冶師生的情操,某校舉辦了“中國夢愛國情成才志”中華經(jīng)典詩文誦讀比賽.九(1)班通過內(nèi)部初選,選出了麗麗和張強兩位同學,但學校規(guī)定每班只有1個名額,經(jīng)過老師與同學們商量,用所學的概率知識設計摸球游戲決定誰去,設計的游戲規(guī)則如下:在A、B兩個不透明的箱子分別放入黃色和白色兩種除顏色外均相同的球,其中A箱中放置3個黃球和2個白球;B箱中放置1個黃球,3個白球,麗麗從A箱中摸一個球,張強從B箱摸一個球進行試驗,若兩人摸出的兩球都是黃色,則麗麗去;若兩人摸出的兩球都是白色,則張強去;若兩人摸出球顏色不一樣,則放回重復以上動作,直到分出勝負為止.
根據(jù)以上規(guī)則回答下列問題:
(1)求一次性摸出一個黃球和一個白球的概率;
(2)判斷該游戲是否公平?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com