【題目】已知如圖△ABC中,以AB為直徑的⊙O與AC,BC的交點(diǎn)分別為D,E.
(1)∠A=68°,求∠CED的大小.
(2)當(dāng)DE=BE時(shí),證明:△ABC為等腰三角形.
【答案】(1)∠CED=68°;(2)證明見(jiàn)解析.
【解析】
(1)根據(jù)圓內(nèi)接四邊形的性質(zhì)可得∠A+∠BED=180°,利用平角的定義及可得答案;
(2)由AB是直徑可得∠ADB=90°,根據(jù)等腰三角形的性質(zhì)可得∠EDB=∠EBD,根據(jù)角的和差關(guān)系可得∠C=∠CDE,同(1)可證明∠CDE=∠ABC,利用等量代換可得出∠C=∠ABC,即可證明△ABC為等腰三角形.
(1)∵四邊形ABED為⊙O的內(nèi)接四邊形,
∴∠A+∠BED=180°,
∵∠BED+∠CED=180°,∠A=68°,
∴∠CED=∠A=68°.
(2)∵AB為直徑,
∴∠ADB=90°,
∵ED=EB,
∴∠EDB=∠EBD,
∵∠CDE+∠EDB=90°,∠C+∠EBD=90°,
∴∠C=∠CDE,
∵四邊形ABED為⊙O的內(nèi)接四邊形,
∴∠ADE+∠ABC=180°,
∵∠CDE+∠ADE=180°,
∴∠CDE=∠ABC,
∴∠C=∠ABC,
∴△ABC為等腰三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用一個(gè)大小形狀固定的不等邊銳角三角形紙,剪出一個(gè)最大的正方形紙備用.甲同學(xué)說(shuō):“當(dāng)正方形的一邊在最長(zhǎng)邊時(shí),剪出的內(nèi)接正方形最大”;乙同學(xué)說(shuō):“當(dāng)正方形的一邊在最短邊上時(shí),剪出的內(nèi)接正方形最大”;丙同學(xué)說(shuō):“不確定,剪不出這樣的正方形紙.”你認(rèn)為誰(shuí)說(shuō)的有道理,請(qǐng)證明.(假設(shè)圖中△ABC的三邊a,b,c,且a>b>c,三邊上的高分別記為ha,hb,hc)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,拋物線與軸交于,兩點(diǎn)(點(diǎn)位于點(diǎn)的左側(cè)),與軸交于點(diǎn).已知的面積是.
(1)求的值;
(2)在內(nèi)是否存在一點(diǎn),使得點(diǎn)到點(diǎn)、點(diǎn)和點(diǎn)的距離相等,若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)如圖②,是拋物線上一點(diǎn),為射線上一點(diǎn),且、兩點(diǎn)均在第三象限內(nèi),、是位于直線同側(cè)的不同兩點(diǎn),若點(diǎn)到軸的距離為,的面積為,且,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,AD是△ABC的角平分線,E,F分別是BD,AD上的點(diǎn),取EF中點(diǎn)G,連接DG并延長(zhǎng)交AB于點(diǎn)M,延長(zhǎng)EF交AC于點(diǎn)N。
(1)求證:∠FAB和∠B互余;
(2)若N為AC的中點(diǎn),DE=2BE,MB=3,求AM的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣x+3與拋物線交于A、B兩點(diǎn),點(diǎn)A在x軸上,點(diǎn)B的橫坐標(biāo)為.動(dòng)點(diǎn)P在拋物線上運(yùn)動(dòng)(不與點(diǎn)A、B重合),過(guò)點(diǎn)P作y軸的平行線,交直線AB于點(diǎn)Q.當(dāng)PQ不與y軸重合時(shí),以PQ為邊作正方形PQMN,使MN與y軸在PQ的同側(cè),連結(jié)PM.設(shè)點(diǎn)P的橫坐標(biāo)為m.
(1)求b、c的值.
(2)當(dāng)點(diǎn)N落在直線AB上時(shí),直接寫(xiě)出m的取值范圍.
(3)當(dāng)點(diǎn)P在A、B兩點(diǎn)之間的拋物線上運(yùn)動(dòng)時(shí),設(shè)正方形PQMN的周長(zhǎng)為C,求C與m之間的函數(shù)關(guān)系式,并寫(xiě)出C隨m增大而增大時(shí)m的取值范圍.
(4)當(dāng)△PQM與坐標(biāo)軸有2個(gè)公共點(diǎn)時(shí),直接寫(xiě)出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三個(gè)頂點(diǎn)的坐標(biāo)分別.
(1)畫(huà)出;
(2)以B為位似中心,將放大到原來(lái)的2倍,在右圖的網(wǎng)格圖中畫(huà)出放大后的圖形△;
(3)寫(xiě)出點(diǎn)A的對(duì)應(yīng)點(diǎn)的坐標(biāo):___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(1,0)、點(diǎn)B(5,0),點(diǎn)P是該直角坐標(biāo)系內(nèi)的一個(gè)動(dòng)點(diǎn).若點(diǎn)P在y軸的負(fù)半軸上,且∠APB=30°,則滿足條件的點(diǎn)P的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=ax2+bx+c上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y的對(duì)應(yīng)值如下表:
x | … | -2 | -1 | 0 | 1 | 2 | … |
y | … | 0 | 4 | 6 | 6 | 4 | … |
觀察上表,得出下面結(jié)論:①拋物線與x軸的一個(gè)交點(diǎn)為(3,0); ②函數(shù)y=ax2+bx+C的最大值為6;③拋物線的對(duì)稱軸是x=;④在對(duì)稱軸左側(cè),y隨x增大而增大.其中正確有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com