【題目】如圖,已知,是的中點(diǎn),過(guò)點(diǎn)作.求證:與相切.
【答案】詳見(jiàn)解析.
【解析】
證法一:連接,,,,連接交于點(diǎn),利用線段垂直平分線的性質(zhì)和垂徑定理的推論證明垂直平分,然后利用垂徑定理和平行線的性質(zhì)求得,從而使問(wèn)題得證;證法二:連接,,連接交于點(diǎn),利用垂徑定理的推論得到,,然后利用平行線的性質(zhì)求得,從而使問(wèn)題得證;證法三:過(guò)點(diǎn)作于點(diǎn),延長(zhǎng)交于點(diǎn),利用垂徑定理的推論得到是的中點(diǎn),然后判斷點(diǎn)與點(diǎn)是同一個(gè)點(diǎn),然后然后利用平行線的性質(zhì)求得,從而使問(wèn)題得證.
證明:證法一:連接,,,,連接交于點(diǎn).
∵,∴點(diǎn)在的垂直平分線上.
∵是的中點(diǎn),∴,∴,
∴點(diǎn)在的垂直平分線上,
∴垂直平分,∴,
∵,∴,∴,
∵點(diǎn)為半徑的外端點(diǎn),
∴與相切.
證法二:連接,,連接交于點(diǎn).
∵是的中點(diǎn),∴,
∴,∴,∴,
∵,∴,∴,
∵點(diǎn)為半徑的外端點(diǎn),
∴與相切.
證法三:過(guò)點(diǎn)作于點(diǎn),延長(zhǎng)交于點(diǎn),
∴,,∴是的中點(diǎn),
∵點(diǎn)是的中點(diǎn),∴點(diǎn)與點(diǎn)是同一個(gè)點(diǎn).
∵,∴,∴,
∵點(diǎn)為半徑的外端點(diǎn),
∴與相切.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一段拋物線y=﹣x(x﹣5)(0≤x≤5),記為C1,它與x軸交于點(diǎn)O,A1;將C1繞點(diǎn)A1旋轉(zhuǎn)180°得C2,交x軸于點(diǎn)A2;將C2繞點(diǎn)A2旋轉(zhuǎn)180°得C3,交x軸于點(diǎn)A3;…如此進(jìn)行下去,得到一“波浪線”,若點(diǎn)P(2018,m)在此“波浪線”上,則m的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖△ABC中,以AB為直徑的⊙O與AC,BC的交點(diǎn)分別為D,E.
(1)∠A=68°,求∠CED的大小.
(2)當(dāng)DE=BE時(shí),證明:△ABC為等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在足夠大的空地上有一段長(zhǎng)為30米的舊墻MN,某人利用舊墻和木欄圍成一個(gè)矩形菜園ABCD,其中AD≤MN,已知矩形菜園的一邊靠墻,另三邊一共用了80米木欄,設(shè)這個(gè)菜園垂直于墻的一邊長(zhǎng)為x米.
(1)若平行于墻的一邊長(zhǎng)為y米,寫(xiě)出y與x的函數(shù)表達(dá)式子,并求出自變量x的取值范圍;
(2)垂直于墻的一邊長(zhǎng)為多少米時(shí),這個(gè)矩形菜園ABCD的面積最大,最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】使用家用燃?xì)庠顭_(kāi)同一壺水所需的燃?xì)饬?/span>(單位:)與旋鈕的旋轉(zhuǎn)角度(單位:度)()近似滿足函數(shù)關(guān)系y=ax2+bx+c(a≠0).如圖記錄了某種家用燃?xì)庠顭_(kāi)同一壺水的旋鈕角度與燃?xì)饬?/span>的三組數(shù)據(jù),根據(jù)上述函數(shù)模型和數(shù)據(jù),可推斷出此燃?xì)庠顭_(kāi)一壺水最節(jié)省燃?xì)獾男o角度約為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在 Rt△ABC 中BC=2,以 BC 的中點(diǎn) O 為圓心的⊙O 分別與 AB,AC 相切于 D,E 兩點(diǎn),的長(zhǎng)為( )
A.B.C.πD.2π
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=4,BC=2,O為對(duì)角線AC的中點(diǎn),點(diǎn)P、Q分別從A和B兩點(diǎn)同時(shí)出發(fā),在邊AB和BC上勻速運(yùn)動(dòng),并且同時(shí)到達(dá)終點(diǎn)B、C,連接PO、QO并延長(zhǎng)分別與CD、DA交于點(diǎn)M、N.在整個(gè)運(yùn)動(dòng)過(guò)程中,圖中陰影部分面積的大小變化情況是( )
A. 一直增大 B. 一直減小 C. 先減小后增大 D. 先增大后減小
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校根據(jù)課程設(shè)置要求,開(kāi)設(shè)了數(shù)學(xué)類拓展性課程,為了解學(xué)生最喜歡的課程內(nèi)容,隨機(jī)抽取了部分學(xué)生進(jìn)行問(wèn)卷調(diào)查(每人必須且只選中其中一項(xiàng)),并將統(tǒng)計(jì)結(jié)果繪制成如下統(tǒng)計(jì)圖(不完整),請(qǐng)根據(jù)圖中信息回答問(wèn)題:
(1)求m,n的值.
(2)補(bǔ)全條形統(tǒng)計(jì)圖.
(3)該校共有1200名學(xué)生,試估計(jì)全校最喜歡“數(shù)學(xué)史話”的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù).
(1)當(dāng)二次函數(shù)的圖象經(jīng)過(guò)坐標(biāo)原點(diǎn)O(0,0)時(shí),求二次函數(shù)的解析式;
(2)如圖,當(dāng)m=2時(shí),該拋物線與y軸交于點(diǎn)C,頂點(diǎn)為D,求C、D兩點(diǎn)的坐標(biāo);
(3)在(2)的條件下,x軸上是否存在一點(diǎn)P,使得PC+PD最短?若P點(diǎn)存在,求出P點(diǎn)的坐標(biāo);若P點(diǎn)不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com