【題目】工廠對某種新型材料進行加工,首先要將其加溫,使這種材料保持在一定溫度范圍內(nèi)方可加工,如圖是在這種材料的加工過程中,該材料的溫度y(℃)時間x(min)變化的數(shù)圖象,已知該材料,初始溫度為15℃,在溫度上升階段,y與x成一次函數(shù)關系,在第5分鐘溫度達到60℃后停止加溫,在溫度下降階段,y與x成反比例關系.
(1)寫出該材料溫度上升和下降階段,y與x的函數(shù)關系式:
①上升階段:當0≤x≤5時,y= ;
②下降階段:當x>5時,y .
(2)根據(jù)工藝要求,當材料的溫度不低于30℃,可以進行產(chǎn)品加工,請問在圖中所示的溫度變化過程中,可以進行加工多長時間?
【答案】(1)①y=9x+15,②=;(2)min.
【解析】
(1)直接利用待定系數(shù)法求出一次函數(shù)以及反比例函數(shù)的解析式;
(2)利用y=30代入結合函數(shù)增減性得出答案.
(1)①上升階段:當0≤x<5時,為一次函數(shù),設一次函數(shù)表達式為y=kx+b,由于一次函數(shù)圖象過點(0,15),(5,60),所以,解得:,所以y=9x+15,②下降階段:當x≥5時,為反比例函數(shù),設函數(shù)關系式為:y,由于圖象過點(5,60),所以m=300,則y.
故答案為:9x+15;.
(2)當0≤x<5時,y=9x+15=30,得:x,因為y隨x的增大而增大,所以x,當x≥5時,y30,得:x=10,因為y隨x的增大而減小,所以x<10,10.
答:可加工min.
科目:初中數(shù)學 來源: 題型:
【題目】某村2016年的人均收入為20000元,2018年的人均收入為24200元
(1)求2016年到2018年該村人均收入的年平均增長率;
(2)假設2019年該村人均收入的增長率與前兩年的年平均增長率相同,請你預測2019年村該村的人均收入是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD的邊AD⊥EF,垂足為點E,點H是菱形ABCD的對稱中心.若FC=,EF=DE,則菱形ABCD的邊長為( 。
A.B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】中秋節(jié)期間,大潤發(fā)超市將購進一批月餅進行銷售,已知購進4盒甲品牌月餅和6盒乙品牌月餅需260元,購進5盒甲品牌月餅和4盒乙品牌月餅需220元.甲乙兩種品牌月餅以相同的售價銷售,甲品牌月餅的銷量(盒)與售價(元)之間的關系為;當售價為40元時,乙品牌月餅可銷售100盒,售價每提高1元,少銷售5盒.
(1)求甲乙兩種品牌月餅每盒的進價分別為多少元?
(2)當乙品牌月餅的售價為多少元時,乙品牌月餅的銷售總利潤最大?此時甲乙兩種品牌月餅的銷售總利潤為多少?
(3)當甲品牌月餅的銷售量不低乙品牌月餅的銷售量的,若使兩種品牌月餅的總利潤最高,求此時的定價為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠MON=α(0<α<90°),A為OM上一點(不與O重合),點A關于直線ON的對稱點為B,AB與ON交于點C,P為直線ON上一點(不與O,C重合)將射線PB繞點P順時針旋轉β角,其中2α+β=180°,所得到的射線與直線OM交于點Q.這個問題中,點的位置和角的大小都不確定,在這里我們僅研究兩種特殊情況,一般的情況留給同學們深入探索.
(1)如圖1,當α=45°時,此時β=90°,若點P在線段OC的延長線上.
①依題意補全圖形;
②求∠PQA﹣∠PBA的值;
(2)如圖2,當α=60°,點P在線段CO的延長線上時,用等式表示線段OC,OP,AQ之間的數(shù)量關系,并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】關于x的一元二次方程x2﹣(2m﹣1)x+m2+1=0.
(1)若方程有實數(shù)根,求實數(shù)m的取值范圍;
(2)設x1,x2分別是方程的兩個根,且滿足x12+x22=x1x2+10,求實數(shù)m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知A,B兩地相距120千米,甲、乙兩人沿同一條公路從A地出發(fā)到B地,乙騎自行車,甲騎摩托車,圖中DE,OC分別表示甲、乙離開A地的路程s(單位:千米)與時間t(單位:小時)的函數(shù)關系的圖象,設在這個過程中,甲、乙兩人相距y(單位:千米),則y關于t的函數(shù)圖象是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“江畔”禮品店在十一月份從廠家購進甲、乙兩種不同禮品.購進甲種禮品共花費1500元,購進乙種禮品共花費1050元,購進甲種禮品數(shù)量是購進乙種禮品數(shù)量的2倍,且購進一件乙種禮品比購進一件甲種禮品多花20元.
⑴求購進一件甲種禮品、一件乙種禮品各需多少元;
⑵元旦前夕,禮品店決定再次購進甲、乙兩種禮品共50個.恰逢該廠家對兩種禮品的價格進行調(diào)整,一件甲種禮品價格比第一次購進時提高了20%,一件乙種禮品價格比第一次購進時降低了5元.如果此次購進甲、乙兩種禮品的總費用不超過3100元,那么這家禮品店最少可購進多少件甲種禮品?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com