【題目】一方有難八方支援,某市政府籌集了抗旱必需物資120噸打算運往災(zāi)區(qū),現(xiàn)有甲、乙、丙三種車型供選擇,每輛車的運載能力和運費如下表所示:(假設(shè)每輛車均滿載)

車型

汽車運載量(噸/輛)

汽車運費(元/輛)

1)若全部物資都用甲、乙兩種車型來運送,需運費元,問分別需甲、乙兩種車型各幾輛?

2)為了節(jié)約運費,該市政府可以調(diào)用甲、乙、丙三種車型參與運送,已知他們的總輛數(shù)為輛,你能通過列方程組的方法分別求出幾種車型的輛數(shù)嗎?

3)求出哪種方案的運費最。孔钍∈嵌嗌僭?

【答案】1)需要甲車8輛,乙車10

2)有三種運送方案:

①甲車型8輛,丙車型8輛;

②甲車型6輛,乙車型5輛,丙車型5輛;

③甲車型4輛,乙車型10輛,丙車型2輛;

3)甲車型4輛,乙車型10輛,丙車型2輛時,最少運費是7800.

【解析】

1)設(shè)需要甲車輛,乙車輛,根據(jù)運費元,總噸數(shù)120噸,列出方程組求解即可;

2)設(shè)甲車有輛,乙車有輛,丙車有輛,列出方程組,再根據(jù)均為正整數(shù),求出的值,即可求解;

3)根據(jù)三種方案求出運費即可求解;

1)設(shè)需要甲車輛,乙車

由題意可得:

解得:

需要甲車8輛,乙車10

2)設(shè)甲車有輛,乙車有輛,丙車有

由題意可得:

消去可得:

由于是非負整數(shù),且不大于16,得:

是非負整數(shù),解得

有三種運送方案:

①甲車型8輛,丙車型8輛;

②甲車型6輛,乙車型5輛,丙車型5輛;

③甲車型4輛,乙車型10輛,丙車型2輛;

3)三種方案得運費分別是:
;

.

甲車型4輛,乙車型10輛,丙車型2輛時,最少運費是7800.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值:

(1)2a3(a2b)2(2a2ab),其中a,b=-2

(2)(m5n4mn)2(2m4n6mn),其中mn4mn=-3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為了了解學(xué)生參加體育運動的興趣情況,從全校學(xué)生中隨機抽取部分學(xué)生進行調(diào)查,對樣本數(shù)據(jù)整理后畫出如下統(tǒng)計圖統(tǒng)計圖不夠完整請結(jié)合圖中信息解答下列問題:

此樣本的樣本容量為:______;

補全條形統(tǒng)計圖;

求興趣為的學(xué)生所占的百分比以及對應(yīng)扇形的圓心角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點A(﹣1,m),B(1,m),C(2,m+1)在同一個函數(shù)圖象上,這個函數(shù)圖象可以是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC,AB=BC,以AB為直徑的圓交AC于點D,過點D的⊙O的切線交BC于點E.若CD=5,CE=4,則⊙O的半徑是( )

A.3
B.4
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,B、D為線段AH上兩點,△ABC、△BDE和△DGH都是等邊三角形,連結(jié)CE并延長交AH的延長線于點F,點G恰好在CF上,△ABC的外接圓⊙O交CF于點M.

(1)求證:AC 2=CMCF;
(2)若CM= ,MF= ,求圓O的半徑長;
(3)設(shè)等邊△ABC、△BDE、△DGH的面積分別為S1、S2、S3 , 請直接寫出S1、S2、S3之間的等量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,AD平分∠BAC,

(1)圖①中,已知AF⊥BC , ∠B=500,∠C=600. 求∠DAF的度數(shù).

2)圖②中,請你在直線AD上任意取一點E(不與點A、D重合),畫EF⊥BC,垂足為F.已知∠B=α,∠C=ββa.求∠DEF的度數(shù). (用α、β的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我省教育廳下發(fā)了在全省中小學(xué)幼兒園廣泛開展節(jié)約教育的通知,通知中要求各學(xué)校全面持續(xù)開展光盤行動深圳市教育局督導(dǎo)組為了調(diào)查學(xué)生對節(jié)約教育內(nèi)容的了解程度程度分為:“A:了解很多、“B:了解較多、“C:了解較少、“D:不了解,對本市某所中學(xué)的學(xué)生進行了抽樣調(diào)查我們將這次調(diào)查的結(jié)果繪制了以下兩幅不完整統(tǒng)計圖:

根據(jù)以上信息,解答下列問題:

補全條形統(tǒng)計圖;

本次抽樣調(diào)查了______名學(xué)生;在扇形統(tǒng)計圖中,求出“D”的部分所對應(yīng)的圓心角度數(shù).

若該中學(xué)共有2000名學(xué)生,請你估計這所中學(xué)的所有學(xué)生中,對節(jié)約教育內(nèi)容了解較少的有多少人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一張矩形紙板按圖中虛線裁剪成九塊,其中有兩塊是邊長都為的大正方形,兩塊是邊長都為的小正方形,五塊是長為,寬為的全等小矩形,且.(以上長度單位:

1)觀察圖形,發(fā)現(xiàn)代數(shù)式可以因式分解為_________________;

2)若每塊小矩形的面積為,四個正方形的面積和為,試求圖中所有裁剪線(虛線部分)的長度之和.

查看答案和解析>>

同步練習(xí)冊答案