分析 (1)首先根據(jù)圓周角定理及垂直的定義得到∠BAD+∠CAD=90°,∠C+∠CAD=90°,從而得到∠BAD=∠C,然后利用等弧對等角等知識得到AF=BF,從而證得FA=FG,判定等腰三角形;
(2)成立,證明方法同(1).
解答 解:(1)等腰三角形;
∵BC為直徑,AD⊥BC,
∴∠BAD+∠CAD=90°,∠C+∠CAD=90°,
∴∠BAD=∠C,
∵$\widehat{AE}=\widehat{AB}$,
∴∠ABE=∠C,
∴∠ABE=∠BAD,
∴AF=BF,
∵∠BAD+∠CAD=90°,∠ABE+∠AGB=90°,
∴∠DAC=∠AGB,
∴FA=FG,
∴△FAG是等腰三角形;
(2)成立;
∵BC為直徑,AD⊥BC,
∴∠BAD+∠CAD=90°,∠C+∠CAD=90°,
∴∠BAD=∠C,
∵$\widehat{AE}=\widehat{AB}$,
∴∠ABE=∠C,
∴∠ABE=∠BAD,
∴AF=BF,
∵∠BAD+∠CAD=90°,∠ABE+∠AGB=90°,
∴∠DAC=∠AGB,
∴FA=FG,
∴△FAG是等腰三角形.
點評 本題考查了圓的綜合知識及垂徑定理、勾股定理等知識,解題的過程中注意等腰三角形的判定與圓的知識的結(jié)合,難度不大.
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | -2 | C. | 4或-2 | D. | ±3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com