14.實數(shù)m,且m-$\frac{1}{m}$=3,則m2-$\frac{1}{{m}^{2}}$=$±3\sqrt{13}$.

分析 根據(jù)已知條件得到m的值,代入代數(shù)式即可得到結論.

解答 解:∵m-$\frac{1}{m}$=3,
∴m2-3m-1=0,
∴m=$\frac{3±\sqrt{13}}{2}$,
∴m2-$\frac{1}{{m}^{2}}$=±3$\sqrt{13}$,
故答案為:±3$\sqrt{13}$

點評 本題考查了解分式方程,熟記解分式方程的方法是解題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:填空題

9.若關于x的一元二次方程(m-2)x2+5x+m2-m-2=0有一個根為0,則m=-1,另一根為$\frac{5}{3}$.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

5.如圖,在△ABC中,AB=AC=4cm,∠BAC=90°.動點P、Q同時從A、B兩點出發(fā),分別沿AB、BC方向勻速移動,它們的速度都是1cm/s,當點P到達點B時,P、Q兩點停止運動.設點P的運動時間為t s,四邊形APQC的面積為y cm2
(1)求y與t的函數(shù)關系式,并寫出t的取值范圍;
(2)當t為何值時,y取得最小值?最小值為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

2.在△ABC中,AB=AC=5,BC=8,點P、Q分別在射線CB、AC上(點P不與點C、點B重合),且保持∠APQ=∠ABC.
①若點P在線段CB上(如圖),且BP=6,求線段CQ的長;
②若BP=x,CQ=y,求y與x之間的函數(shù)關系式,并寫出自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

9.如圖,在△ABC中,AB=AC=1,∠A=60°,邊長為1的正方形的一個頂點D在邊AC上,與△ABC另兩邊分別交于點E、F,DE∥AB,將正方形平移,使點D保持在AC上(D不與A重合),設AF=x,正方形與△ABC重疊部分的面積為y.
(1)求y與x的函數(shù)關系式;
(2)x取何值時,y有最大值,最大值為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

19.將6張小長方形紙片(如圖1所示)按圖2所示的方式不重疊的放在長方形ABCD內(nèi),未被覆蓋的部分恰好分割為兩個長方形,面積分別為S1和S2.已知小長方形紙片的長為a,寬為b,且a>b.當AB長度不變而BC變長時,將6張小長方形紙片還按照同樣的方式放在新的長方形ABCD內(nèi),S1與S2的差總保持不變,求a,b滿足的關系式.
(1)為解決上述問題,如圖3,小明設EF=x,則可以表示出S1=a(x+a),S2=4b(x+2b);
(2)求a,b滿足的關系式,寫出推導過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

6.如圖,l1表示某產(chǎn)品一天的銷售收入與銷售量的關系;l2表示該產(chǎn)品一天的銷售成本與銷售量的關系.則銷售收入y1與銷售量之間的函數(shù)關系式y(tǒng)1=x,銷售成本y2與銷售量之間的函數(shù)關系式y(tǒng)2=$\frac{1}{2}$x+2,當一天的銷售量超過x>4時,生產(chǎn)該產(chǎn)品才能獲利.(提示:利潤=收入-成本)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

3.如圖,正方形ABCD內(nèi)部有若干個點,用這些點以及正方形ABCD的頂點A、B、C、D把原正方形分割成一些三角形(互相不重疊):

(1)填寫下表:
正方形ABCD內(nèi)點的個數(shù)1234n
分割成的三角形的個數(shù)46
(2)前5個正方形分割的三角形的和40前n個正方形分割的三角形的和n2+3n,
(3)原正方形能否被分割成2 012個三角形?若能,求此時正方形ABCD內(nèi)部有多少個點?若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

4.如圖,BC是⊙O的直徑,點A在⊙O上,AD⊥BC,垂足為D,弧AE等于弧AB,BE分別交AD、AC于點F、G.
(1)判斷△FAG的形狀,并說明理由;
(2)若點E和點A在BC的兩側,BE、AC的延長線交于點G,AD的延長線交BE于點F,其余條件不變,(1)中的結論還成立嗎?請說明理由.

查看答案和解析>>

同步練習冊答案