【題目】在△ABC中,AB=AC,點D是直線BC上一點(不與B,C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE=∠BAC,連結(jié)CE.
(1)如圖1,當(dāng)點D在線段BC上時,如果∠BAC=90°,則∠BCE= °.
(2)設(shè)∠BAC=α,∠BCE=β.
①如圖2,當(dāng)點D在線段BC上移動時,α,β之間有怎樣的數(shù)量關(guān)系?請說明理由.
②當(dāng)點D在直線BC上移動時,α,β之間有怎樣的數(shù)量關(guān)系?請你在備用圖上畫出圖形,并直接寫出你的結(jié)論.
【答案】(1)90°;(2)①α+β=180°,見解析;②見解析,α=β
【解析】
(1)先用等式的性質(zhì)得出∠CAE=∠BAD,進而得出△ABD≌△ACE,有∠B=∠ACE,最后用等式的性質(zhì)即可得出結(jié)論;
(2)①由(1)的結(jié)論即可得出α+β=180°;②同(1)的方法即可得出結(jié)論.
解:(1)∵∠DAE=∠BAC,∠BAC=∠BAD+∠DAC=∠EAC+∠DAC;
∴∠CAE=∠BAD;
在△ABD和△ACE中,
∴△ABD≌△ACE(SAS);
∴∠B=∠ACE;
∴∠BCE=∠BCA+∠ACE=∠BCA+∠B=180°﹣∠BAC=90°;
故答案為90°;
(2)①由(1)中可知β=180°﹣α,
∴α、β存在的數(shù)量關(guān)系為α+β=180°;
②當(dāng)點D在射線BC上時,如圖1,
同(1)的方法即可得出,△ABD≌△ACE(SAS);
∴∠ABD=∠ACE,
∴β=∠BCE=∠ACB+∠ACE=∠ACB+∠ABD=180°﹣∠BAC=180°﹣α,
∴α+β=180°;
當(dāng)點D在射線BC的反向延長線上時,如圖2,
同(1)的方法即可得出,△ABD≌△ACE(SAS);
∴∠ABD=∠ACE,
∴β=∠BCE=∠ACE﹣∠ACB=∠ABD﹣∠ACB=∠BAC=α,
∴α=β.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC,BE⊥AC,垂足分別為點D、E,AD與BE交于點F,BF=AC, ∠ABE=22°,則∠CAD的度數(shù)是________°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是作一個角的角平分線的方法:以的頂點為圓心,以任意長為半徑畫弧,分別交于兩點,再分別以為圓心,大于長為半徑作畫弧,兩條弧交于點,作射線,過點作交于點.
(1)若,求的度數(shù);
(2)若,垂足為,求證: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行于x軸的直線AC分別交函數(shù) y=x(x≥0)與 y= x(x≥0)的圖象于 B,C兩點,過點C作y軸的平行線交y=x(x≥0)的圖象于點D,直線DE∥AC交 y=x(x≥0)的圖象于點E,則=( )
A. B. 1 C. D. 3﹣
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象交x軸于(-1,0)點,則下列結(jié)論中正確的是( )
A. c<0 B. a-b+c<0 C. b2<4ac D. 2a+b=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中有兩點A(6,0),B(0,3),如果點C在x軸上(C與A不重合),當(dāng)點C的坐標(biāo)為 時,△BOC與△AOB相似.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com