在Rt△ABC中,∠C=90°,AC=9,BC=12,則點C到AB的距離是( )
A. B. C. D.
A【考點】勾股定理;點到直線的距離;三角形的面積.
【專題】計算題.
【分析】根據(jù)題意畫出相應(yīng)的圖形,如圖所示,在直角三角形ABC中,由AC及BC的長,利用勾股定理求出AB的長,然后過C作CD垂直于AB,由直角三角形的面積可以由兩直角邊乘積的一半來求,也可以由斜邊AB乘以斜邊上的高CD除以2來求,兩者相等,將AC,AB及BC的長代入求出CD的長,即為C到AB的距離.
【解答】解:根據(jù)題意畫出相應(yīng)的圖形,如圖所示:
在Rt△ABC中,AC=9,BC=12,
根據(jù)勾股定理得:AB==15,
過C作CD⊥AB,交AB于點D,
又S△ABC=AC•BC=AB•CD,
∴CD===,
則點C到AB的距離是.
故選A
【點評】此題考查了勾股定理,點到直線的距離,以及三角形面積的求法,熟練掌握勾股定理是解本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0,其中正確的是 (填編號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
若反比例函數(shù)y=的圖象經(jīng)過(﹣2,5),則該反比例函數(shù)的圖象在( 。
A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
有甲、乙兩個不透明的布袋,甲袋中裝有3個完全相同的小球,分別標(biāo)有數(shù)字0,1,2;乙袋中裝有2個完全相同的小球,分別標(biāo)有數(shù)字﹣1,﹣2.現(xiàn)從甲袋中隨機(jī)抽取一個小球,將標(biāo)有的數(shù)字記錄為x,再從乙袋中隨機(jī)抽取一個小球,將標(biāo)有的數(shù)字記錄為y,確定點M的坐標(biāo)為(x,y).
(1)用樹狀圖或列表法列舉點M所有可能的坐標(biāo);
(2)求點M(x,y)在二次函數(shù)y=x2﹣2x﹣2的圖象上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
下列長度的線段不能構(gòu)成直角三角形的是( )
A.8,15,17 B.1.5,2,3 C.6,8,10 D.5,12,13
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
每年9月舉行“全國中學(xué)生數(shù)學(xué)聯(lián)賽”,成績優(yōu)異的選手可參加“全國中學(xué)生數(shù)學(xué)冬令營”,冬令營再選拔出50名優(yōu)秀選手進(jìn)入“國家集訓(xùn)隊”.第31界冬令營已于2015年12月在江西省鷹譚一中成功舉行.現(xiàn)將脫穎而出的50名選手分成兩組進(jìn)行競賽,每組25人,成績整理并繪制成如下的統(tǒng)計圖:
請你根據(jù)以上提供的信息解答下列問題:
(1)請你將表格補(bǔ)充完整:
平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 | |
一組 | 74 | __________ | __________ | 104 |
二組 | __________ | __________ | __________ | 72 |
(2)從本次統(tǒng)計數(shù)據(jù)來看,__________組比較穩(wěn)定.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com