【題目】如圖,在△ABC中,∠ACB=90°,∠ABC=30°,BC=2.將△ABC繞點C逆時針旋轉某個角度后得到△A′B′C,當點A的對應點A′落在AB邊上時,陰影部分的面積為___________.
【答案】π-
【解析】
連接CA′,證明三角形AA′C是等邊三角形即可得到旋轉角α的度數(shù),再利用旋轉的性質(zhì)求出扇形圓心角以及△CDB′的兩直角邊長,進而得出圖形面積即可.
如圖,
∵AC=A′C,且∠A=60°,
∴△ACA′是等邊三角形.
∴∠ACA′=60°,
∴∠A′CB=90°-60°=30°,
∵∠CA′D=∠A=60°,
∴∠CDA′=90°,
∵∠B′CB=∠A′CB′-∠A′CB=90°-30°=60°,
∴∠CB′D=30°,
∴CD=CB′=CB=×2=1,
∴B′D=,
∴S△CDB′=×CD×DB′=×1×=,
S扇形B′CB=,
則陰影部分的面積為:π-,
故答案為:π-.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC,AB=AC=10,BC=16.
(1)作△ABC的外接圓O(用圓規(guī)和直尺作圖,不寫作法,但要保留作圖痕跡)
(2)求OA的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某班“數(shù)學興趣小組”對函數(shù)y=﹣x2+2|x|+1的圖象和性質(zhì)進行了探究,探究過程如下,請補充完整.
(1)自變量x的取值范圍是全體實數(shù),x與y的幾組對應值列表如下:
x | … | ﹣3 | ﹣ | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … | |
y | … | ﹣2 | ﹣ | m | 2 | 1 | 2 | 1 | ﹣ | ﹣2 | … |
其中,m= .
(2)根據(jù)上表數(shù)據(jù),在如圖所示的平面直角坐標系中描點,畫出了函數(shù)圖象的一部分,請畫出該函數(shù)圖象的另一部分.
(3)觀察函數(shù)圖象,寫出兩條函數(shù)的性質(zhì).
(4)進一步探究函數(shù)圖象發(fā)現(xiàn):
①方程﹣x2+2|x|+1=0有 個實數(shù)根;
②關于x的方程﹣x2+2|x|+1=
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,M、N為AB的三等分點,DM、DN分別交AC于P、Q兩點,則AP:PQ:QC=________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在半徑等于5 cm的圓內(nèi)有長為cm的弦,則此弦所對的圓周角為
A.60°B.120°C.60°或120°D.30°或120°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,⊙M經(jīng)過原點O(0,0),點A(,0)與點B(0,-),點D在劣弧上,連結BD交x軸于點C,且∠COD=∠CBO.
(1)求⊙M的半徑;
(2)求證:BD平分∠ABO;
(3)在線段BD的延長線上找一點E,使得直線AE恰為⊙M的切線,求此時點E的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校計劃利用一片空地建一個學生自行車車棚,自行車車棚為矩形,其中一面靠墻,這堵墻的長度為,另三面墻用現(xiàn)有的木板材料圍成,總長為,且計劃建造車棚的面積為
(1)如圖1,為了方便學生出行,學校決定在與墻平行的一面留兩個寬的門,求這個車棚的長和寬;
(2)如圖2,為了方使學生停取車,施工單位又決定在車棚內(nèi)修建一條平行于墻和兩條垂直于墻的條等寬小路,使得剩余面積為,求小路的寬度。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,將△ABC繞點A順時針旋轉后,得到△ADF,此時點D落在邊BC的中點處,則圖中與∠C相等的角(除∠C外)有( )
A.5個 B.4個 C.3個 D.2個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com