【題目】如圖在7×7的正方形網(wǎng)格中,△ABC的頂點都在邊長為1的小正方形的頂點上.

(1)將△ABC繞點B逆時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△A1BC1;

(2)求出旋轉(zhuǎn)過程中,線段BA掃過的圖形的面積(結(jié)果保留π).

【答案】(1)詳見解析;(2).

【解析】

(1)按照要求確定出點A、B、C繞著點B逆時針旋轉(zhuǎn)90°后的對應點A1、B、C1,然后順次連結(jié)A1B,C1A1,BC1,可得△A1BC1;(2)在旋轉(zhuǎn)過程中,線段BA掃過的圖形的扇形ABA1,根據(jù)扇形的面積公式即可求解

解:(1)如圖所示,△A1BC1即為所求;

(2)在旋轉(zhuǎn)過程中,線段BA掃過的圖形的扇形ABA1,

Rt△ABC中,∠ACB=90°,

AB==,

所以扇形ABA1的面積為=π.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】(2017江蘇省常州市)為了解某校學生的課余興趣愛好情況,某調(diào)查小組設計了閱讀”、“打球”、“書法其他四個選項,用隨機抽樣的方法調(diào)查了該校部分學生的課余興趣愛好情況(每個學生必須選一項且只能選一項),并根據(jù)調(diào)查結(jié)果繪制了如下統(tǒng)計圖:

根據(jù)統(tǒng)計圖所提供的信息,解答下列問題:

(1)本次抽樣調(diào)查中的樣本容量是 ;

(2)補全條形統(tǒng)計圖;

(3)該校共有2000名學生,請根據(jù)統(tǒng)計結(jié)果估計該校課余興趣愛好為打球的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某電信公司手機的通訊卡有,兩種業(yè)務類型:類卡收費標準是:不管通話時間多長,每部手機每月必須繳月租費12元,另外,通話費按02/分鐘計;類卡收費標準是:沒有月租,但通話費按025/分鐘計.如圖所示,是每月應繳費用(元)與通話時間(分鐘)之間的函數(shù)圖象.下列結(jié)論:

①圖中類卡的收費方式所表示的函數(shù)圖象;

②若李海本月的通話時間為180分鐘,則他選擇類卡省錢;

③若本月李海預繳了100元的話費,則他選擇類卡劃算;

④若類卡比類卡的話費多10元,則類卡和類卡的通話時間都是40分鐘或類卡比類卡的通話時間多40分鐘且類卡和類卡的通話時間分別為240分鐘和200分鐘.其中正確的結(jié)論有(

A.①②③④B.②③④C.②③D.②④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知⊙O△ABC的三邊AB、BC、AC分別相切于點D、E、F,如果BC邊的長為10cm,AD的長為4cm,那么△ABC的周長為_____cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的袋中裝有5個只有顏色不同的球,其中3個黃球,2個黑球.

(1)求從袋中同時摸出的兩個球都是黃球的概率;

(2)現(xiàn)將黑球和白球若干個(黑球個數(shù)是白球個數(shù)的2倍)放入袋中,攪勻后,若從袋中摸出一個球是黑球的概率是,求放入袋中的黑球的個數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點D,E分別在AB,AC上,DEBC,FAD上一點,FE的延長線交BC的延長線于點G.求證:

(1)EGH>ADE;

(2)EGHADEAAEF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,四邊形OABC為矩形,點A,B的坐標分別為(4,0),(4,3),動點M,N分別從O,B同時出發(fā).以每秒1個單位的速度運動.其中,點M沿OA向終點A運動,點N沿BC向終點C運動.過點M作MPOA,交AC于P,連接NP,已知動點運動了x秒.

(1)求P點的坐標(用含x的代數(shù)式表示);

(2)試求NPC面積S的表達式,并求出面積S的最大值及相應的x值;

(3)設四邊形OMPC的面積為S1,四邊形ABNP的面積為S2,請你就x的取值范圍討論S1與S2的大小關系并說明理由;

(4)當x為何值時,NPC是一個等腰三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,直線l過正方形ABCD的頂點B,點A、C到直線l的距離分別是AE=1,CF=2,則EF長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,是邊上的中線,的中點,過點的平行線與的延長線相交于點,連接

1)求證:四邊形為平行四邊形;

2)若,請寫出圖中所有與線段相等的線段(線段除外).

查看答案和解析>>

同步練習冊答案