【題目】如果一個角是50°,那么它的余角的度數(shù)是( ).
A.40°B.50°C.100°D.130°
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知四邊形DOBC是矩形,且D(0,4),B(6,0).若反比例函數(shù)y=(x>0)的圖象經(jīng)過線段OC的中點A,交DC于點E,交BC于點F.設直線EF的解析式為y=k2x+b.
(1)求反比例函數(shù)和直線EF的解析式;
(2)求△OEF的面積;
(3)請結合圖象直接寫出不等式k2x+b﹣ >0的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線l:y=x+1交x軸于點A,交y軸于點B,點A1、A2、A3,…在x軸的正半軸上,點B1、B2、B3,…在直線l上.若△OB1A1,△A1B2A2,△A2B3A3,…均為等邊三角形,則△A6B7A7的周長是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點C是∠ABC一邊上一點
(1)按下列要求進行尺規(guī)作圖: ①作線段BC的中垂線DE,E為垂足.
②作∠ABC的平分線BD.
③連結CD,并延長交BA于F.
(2)若∠ABC=62°,求∠BFC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,點A為半圓O直徑MN所在直線上一點,射線AB垂直于MN,垂足為A,半圓繞M點順時針轉動,轉過的角度記作a;設半圓O的半徑為R,AM的長度為m,回答下列問題:
探究:(1)若R=2,m=1,如圖1,當旋轉30°時,圓心O′到射線AB的距離是 ;如圖2,當a= °時,半圓O與射線AB相切;
(2)如圖3,在(1)的條件下,為了使得半圓O轉動30°即能與射線AB相切,在保持線段AM長度不變的條件下,調(diào)整半徑R的大小,請你求出滿足要求的R,并說明理由.
(3)發(fā)現(xiàn):(3)如圖4,在0°<α<90°時,為了對任意旋轉角都保證半圓O與射線AB能夠相切,小明探究了cosα與R、m兩個量的關系,請你幫助他直接寫出這個關系;
cosα= (用含有R、m的代數(shù)式表示)
拓展:(4)如圖5,若R=m,當半圓弧線與射線AB有兩個交點時,α的取值范圍是 ,并求出在這個變化過程中陰影部分(弓形)面積的最大值(用m表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,正方形ABCD的邊長為6,菱形EFGH的三個頂點E、G、H 分別在正方形ABCD邊AB、CD、DA上,AH=2.
(1)如圖1,當DG=2,且點F在邊BC上時.
求證:① △AHE≌△DGH;
② 菱形EFGH是正方形;
(2)如圖2,當點F在正方形ABCD的外部時,連接CF.
① 探究:點F到直線CD的距離是否發(fā)生變化?并說明理由;
② 設DG=x,△FCG的面積為S,是否存在x的值,使得S=1,若存在,求出x的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC內(nèi)接于O,AB=AC,D在劣弧AC上,∠ABD=45°
(1) 如圖1,BD交AC于E,連CD.若AB=BD,求證:CD=DE
(2) 如圖2,連AD、CD,已知sin∠BDC=,求tan∠CBD的值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com