【題目】已知關(guān)于x的方程x2+(m+2)x+2m-1=0.

(1)求證方程有兩個不相等的實數(shù)根.

(2)當(dāng)m為何值時,方程的兩根互為相反數(shù)?并求出此時方程的解.

【答案】(1)證明見解析(2)x1=,x2=-

【解析】試題分析:(1)先計算出△=m+22﹣42m﹣1),變形得到△=m﹣22+4,由于(m﹣22≥0,則0,然后根據(jù)的意義得到方程有兩個不相等的實數(shù)根;

2)利用根與系數(shù)的關(guān)系得到x1+x2=0,即m+2=0,解得m=﹣2,則原方程化為x2﹣5=0,然后利用直接開平方法求解.

1)證明:△=m+22﹣42m﹣1

=m2﹣4m+8

=m﹣22+4,

m﹣22≥0,

m﹣22+40,

0

所以方程有兩個不相等的實數(shù)根;

2)設(shè)方程的兩個根為x1x2,由題意得:

x1+x2=0,即m+2=0,解得m=﹣2,

當(dāng)m=﹣2時,方程兩根互為相反數(shù),

當(dāng)m=﹣2時,原方程為x2﹣5=0,

解得:x1=﹣,x2=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在菱形ABCD中,F為邊BC的中點,DF與對角線AC交于點M,過MMECD于點E,1=2

1)若CE=1,求BC的長;

2)探究AM DFME有什么數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】芝麻作為食品和藥物,均廣泛使用,經(jīng)測算,一粒芝麻重量約有0.00 000 201kg,用科學(xué)記數(shù)法表示10粒芝麻的重量為( 。

A. 2.01×106kg B. 2.01×105kg C. 20.1×107kg D. 20.1×106kg

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】共享單車為市民出行帶來了方便,某單車公司第一個月投放1000輛單車,計劃第三個月投放單車數(shù)量比第一個月多440輛.設(shè)該公司第二、三兩個月投放單車數(shù)量的月平均增長率為x,則所列方程正確的為( )
A.1000(1+x)2=1000+440
B.1000(1+x)2=440
C.440(1+x)2=1000
D.1000(1+2x)=1000+440

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=(x-m)2-(x-m),其中m是常數(shù).

(1)求證:不論m為何值,該拋物線與x軸一定有兩個公共點;

(2)若該拋物線的對稱軸為直線x=.

①求該拋物線的函數(shù)解析式;

②把該拋物線沿y軸向上平移多少個單位長度后,得到的拋物線與x軸只有一個公共點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于二次函數(shù)和一次函數(shù),把 稱為這兩個函數(shù)的再生二次函數(shù),其中t是不為零的實數(shù),其圖象記作拋物線L.現(xiàn)有點A20)和拋物線L上的點B1n),請完成下列任務(wù):

【嘗試】(1)當(dāng)t=2時,拋物線 的頂點坐標(biāo)為   

2)判斷點A   (填是或否)在拋物線L上;

3n的值是   

【發(fā)現(xiàn)】通過(2)和(3)的演算可知,對于t取任何不為零的實數(shù),拋物線L總過定點,坐標(biāo)為      

【應(yīng)用】二次函數(shù)是二次函數(shù)和一次函數(shù)的一個再生二次函數(shù)嗎?如果是,求出t的值;如果不是,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,直徑AB⊥CD,垂足為E,點M在OC上,AM的延長線交⊙O于點G,交過C的直線于F,∠1=∠2,連結(jié)CB與DG交于點N.

(1)求證:CF是⊙O的切線;

(2)求證:△ACM∽△DCN;

(3)若點M是CO的中點,⊙O的半徑為4,cos∠BOC=,求BN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點P(3,﹣4)關(guān)于y軸的對稱點P′的坐標(biāo)是( )
A.(﹣3,﹣4)
B.(3,4)
C.(﹣3,4)
D.(﹣4,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象交坐標(biāo)軸于A﹣1,0),B4,0),C0,﹣4)三點,點P是直線BC下方拋物線上一動點.

1)求這個二次函數(shù)的解析式;

2)動點P運動到什么位置時,△PBC面積最大,求出此時P點坐標(biāo)和△PBC的最大面積.

3)是否存在點P,使△POC是以OC為底邊的等腰三角形?若存在,求出P點坐標(biāo);若不存在,請說明理由;

查看答案和解析>>

同步練習(xí)冊答案