【題目】如圖所示,BF、DE相交于點(diǎn)A,BG交BF于點(diǎn)B,交AC于點(diǎn)C.
(1)指出ED、BC被BF所截的同位角,內(nèi)錯(cuò)角,同旁內(nèi)角;
(2)指出ED、BC被AC所截的內(nèi)錯(cuò)角,同旁內(nèi)角;
(3)指出FB、BC被AC所截的內(nèi)錯(cuò)角,同旁內(nèi)角.
【答案】
(1)同位角:∠FAE和∠B;內(nèi)錯(cuò)角:∠B和∠DAB;同旁內(nèi)角:∠EAB和∠B;
(2)內(nèi)錯(cuò)角:∠EAC和∠BCA,∠DAC和∠ACG;同旁內(nèi)角:∠EAC和∠ACG,∠DAC和∠BCA;
(3) 內(nèi)錯(cuò)角:∠BAC和∠ACG,∠FAC和∠BCA;
同旁內(nèi)角:∠BAC和∠BCA,∠BAC和∠ABC,∠B和∠ACB,∠FAC和∠ACG.
【解析】根據(jù)同位角:兩條直線被第三條直線所截形成的角中,若兩個(gè)角都在兩直線的同側(cè),并且在第三條直線(截線)的同旁,則這樣一對角叫做同位角. 內(nèi)錯(cuò)角:兩條直線被第三條直線所截形成的角中,若兩個(gè)角都在兩直線的之間,并且在第三條直線(截線)的兩旁,則這樣一對角叫做內(nèi)錯(cuò)角.
同旁內(nèi)角:兩條直線被第三條直線所截形成的角中,若兩個(gè)角都在兩直線的之間,并且在第三條直線(截線)的同旁,則這樣一對角叫做同旁內(nèi)角.進(jìn)行解答.
此題主要考查了三線八角,關(guān)鍵是掌握同位角的邊構(gòu)成“F”形,內(nèi)錯(cuò)角的邊構(gòu)成“Z”形,同旁內(nèi)角的邊構(gòu)成“U”形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=﹣x+2分別與x、y軸交于點(diǎn)B、A,與反比例函數(shù)的圖象分別交于點(diǎn)C、D,CE⊥x軸于點(diǎn)E,OE=2.
(1)求反比例函數(shù)的解析式;
(2)連接OD,求△OBD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖所示,∠ABD和∠BDC的平分線交于E,BE交CD于點(diǎn)F,∠1+∠2=90°.
(1)求證:AB∥CD;
(2)試探究∠2與∠3的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:
(1)找出直線DC,AC被直線BE所截形成的同旁內(nèi)角.
(2)指出∠DEF與∠CFE是由哪兩條直線被哪一條直線所截形成的什么角.
(3)試找出圖中與∠DAC是同位角的所有角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),直線⊥軸于點(diǎn)P,Rt△ABC中,斜邊AB=5,直角邊AC=3,點(diǎn)A(0, )在軸上運(yùn)動(dòng),直角邊BC在直線上,將△ABC繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°,得到△DEF。以直線為對稱軸的拋物線經(jīng)過點(diǎn)F。
(1)求點(diǎn)F的坐標(biāo)(用含的式子表示)
(2)①如圖(2)當(dāng)拋物線的頂點(diǎn)為點(diǎn)C時(shí),拋物線恰好過坐標(biāo)原點(diǎn)。求此時(shí)拋物線的解析式;
②如圖(3)不改變①中拋物線的開口方向和形狀,讓點(diǎn)A的位置發(fā)生變化,使拋物線與線段AB始終有交點(diǎn)M(, ).
(ⅰ)求的取值范圍;
(ⅱ)變化過程中,當(dāng)變成某一個(gè)值時(shí),點(diǎn)A的位置唯一確定,求此時(shí)點(diǎn)M的坐標(biāo)。
圖(1) 圖(2) 圖(3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于任意實(shí)數(shù)a,b,定義a*b=a(a+b)+b,已知a*4=25,則實(shí)數(shù)a的值是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+c與x軸交于A、B兩點(diǎn)(A在B的左邊),與y軸交于點(diǎn)C,拋物線上有一動(dòng)點(diǎn)P
(1)若A(﹣2,0),C(0,﹣4)
①求拋物線的解析式;
②在①的情況下,若點(diǎn)P在第四象限運(yùn)動(dòng),點(diǎn)D(0,﹣2),以BD、BP為鄰邊作平行四邊形BDQP,求平行四邊形BDQP面積的取值范圍.
(2)若點(diǎn)P在第一象限運(yùn)動(dòng),且a<0,連接AP、BP分別交y軸于點(diǎn)E、F,則問 是否與a,c有關(guān)?若有關(guān),用a,c表示該比值;若無關(guān),求出該比值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com