如圖,拋物線y=ax2+bx+c(a≠0)的圖象過(guò)點(diǎn)C(0,1),頂點(diǎn)為Q(2,3),點(diǎn)D在x軸正半軸上,且OD=OC.
(1)求直線CD的解析式;
(2)求拋物線的解析式;
(3)將直線CD繞點(diǎn)C逆時(shí)針?lè)较蛐D(zhuǎn)45°所得直線與拋物線相交于另一點(diǎn)E,求證:△CEQ∽△CDO;
(4)在(3)的條件下,若點(diǎn)P是線段QE上的動(dòng)點(diǎn),點(diǎn)F是線段OD上的動(dòng)點(diǎn),問(wèn):在P點(diǎn)和F點(diǎn)移動(dòng)過(guò)程中,△PCF的周長(zhǎng)是否存在最小值?若存在,求出這個(gè)最小值;若不存在,請(qǐng)說(shuō)明理由.
解:(1)∵C(0,1),OD=OC,∴D點(diǎn)坐標(biāo)為(1,0).
設(shè)直線CD的解析式為y=kx+b(k≠0),
將C(0,1),D(1,0)代入得:,
解得:b=1,k=﹣1,
∴直線CD的解析式為:y=﹣x+1.
(2)設(shè)拋物線的解析式為y=a(x﹣2)2+3,
將C(0,1)代入得:1=a×(﹣2)2+3,解得a=.
∴y=(x﹣2)2+3=x2+2x+1.
(3)證明:由題意可知,∠ECD=45°,
∵OC=OD,且OC⊥OD,∴△OCD為等腰直角三角形,∠ODC=45°,
∴∠ECD=∠ODC,∴CE∥x軸,則點(diǎn)C、E關(guān)于對(duì)稱軸(直線x=2)對(duì)稱,
∴點(diǎn)E的坐標(biāo)為(4,1).
如答圖①所示,設(shè)對(duì)稱軸(直線x=2)與CE交于點(diǎn)M,則M(2,1),
∴ME=CM=QM=2,∴△QME與△QMC均為等腰直角三角形,∴∠QEC=∠QCE=45°.
又∵△OCD為等腰直角三角形,∴∠ODC=∠OCD=45°,
∴∠QEC=∠QCE=∠ODC=∠OCD=45°,
∴△CEQ∽△CDO.
(4)存在.
如答圖②所示,作點(diǎn)C關(guān)于直線QE的對(duì)稱點(diǎn)C′,作點(diǎn)C關(guān)于x軸的對(duì)稱點(diǎn)C″,連接C′C″,交OD于點(diǎn)F,交QE于點(diǎn)P,則△PCF即為符合題意的周長(zhǎng)最小的三角形,由軸對(duì)稱的性質(zhì)可知,△PCF的周長(zhǎng)等于線段C′C″的長(zhǎng)度.
(證明如下:不妨在線段OD上取異于點(diǎn)F的任一點(diǎn)F′,在線段QE上取異于點(diǎn)P的任一點(diǎn)P′,連接F′C″,F(xiàn)′P′,P′C′.
由軸對(duì)稱的性質(zhì)可知,△P′CF′的周長(zhǎng)=F′C″+F′P′+P′C′;
而F′C″+F′P′+P′C′是點(diǎn)C′,C″之間的折線段,
由兩點(diǎn)之間線段最短可知:F′C″+F′P′+P′C′>C′C″,
即△P′CF′的周長(zhǎng)大于△PCE的周長(zhǎng).)
如答圖③所示,連接C′E,
∵C,C′關(guān)于直線QE對(duì)稱,△QCE為等腰直角三角形,
∴△QC′E為等腰直角三角形,
∴△CEC′為等腰直角三角形,
∴點(diǎn)C′的坐標(biāo)為(4,5);
∵C,C″關(guān)于x軸對(duì)稱,∴點(diǎn)C″的坐標(biāo)為(0,﹣1).
過(guò)點(diǎn)C′作C′N⊥y軸于點(diǎn)N,則NC′=4,NC″=4+1+1=6,
在Rt△C′NC″中,由勾股定理得:C′C″===.
綜上所述,在P點(diǎn)和F點(diǎn)移動(dòng)過(guò)程中,△PCF的周長(zhǎng)存在最小值,最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在△ABC中,∠ABC=90°,D為AB延長(zhǎng)線上一點(diǎn),點(diǎn)E在BC邊上且BE=BD,連結(jié)AE、DE、DC,AE=DC.
(1)求證:AB=BC,AE⊥DC;
(2)若∠CAE=30°,求∠BDC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在邊長(zhǎng)為4的正方形ABCD中,以AB為直徑的半圓與對(duì)角線AC交于點(diǎn)E.
(1)求弧BE所對(duì)的圓心角的度數(shù).
(2)求圖中陰影部分的面積(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
對(duì)于一次函數(shù)y=kx﹣k(k≠0),下列敘述正確的是( )
A. 當(dāng)k>0時(shí),函數(shù)圖象經(jīng)過(guò)第一、二、三象限
B. 當(dāng)k>0時(shí),y隨x的增大而減小
C. 當(dāng)k<0時(shí),函數(shù)圖象一定交于y軸負(fù)半軸一點(diǎn)
D. 函數(shù)圖象一定經(jīng)過(guò)點(diǎn)(1,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖所示,點(diǎn)A、B、C、D在同一個(gè)圓上,弦AD、BC的延長(zhǎng)線交于點(diǎn)E,則圖中相似三角形共有( 。
A. 2對(duì) B. 3對(duì) C. 4對(duì) D. 5對(duì)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com