【題目】如圖,在△AOB中,∠AOB為直角,OA=6,OB=8,半徑為2的動圓圓心Q從點O出發(fā),沿著OA方向以1個單位長度/秒的速度勻速運動,同時動點P從點A出發(fā),沿著AB方向也以1個單位長度/秒的速度勻速運動,設(shè)運動時間為t秒(0<t≤5)以P為圓心,PA長為半徑的⊙P與AB、OA的另一個交點分別為C、D,連結(jié)CD、QC.
(1)當(dāng)t為何值時,點Q與點D重合?
(2)當(dāng)⊙Q經(jīng)過點A時,求⊙P被OB截得的弦長.
(3)若⊙P與線段QC只有一個公共點,求t的取值范圍.
【答案】(1);(2);(3)0<t≤或<t≤5.
【解析】
(1)由題意知CD⊥OA,所以△ACD∽△ABO,利用對應(yīng)邊的比求出AD的長度,若Q與D重合時,則,AD+OQ=OA,列出方程即可求出t的值;
(2)由于0<t≤5,當(dāng)Q經(jīng)過A點時,OQ=4,此時用時為4s,過點P作PE⊥OB于點E,利用垂徑定理即可求出⊙P被OB截得的弦長;
(3)若⊙P與線段QC只有一個公共點,分以下兩種情況,①當(dāng)QC與⊙P相切時,計算出此時的時間;②當(dāng)Q與D重合時,計算出此時的時間;由以上兩種情況即可得出t的取值范圍.
(1)∵OA=6,OB=8,
∴由勾股定理可求得:AB=10,
由題意知:OQ=AP=t,
∴AC=2t,
∵AC是⊙P的直徑,
∴∠CDA=90°,
∴CD∥OB,
∴△ACD∽△ABO,
∴,
∴AD=,
當(dāng)Q與D重合時,
AD+OQ=OA,
∴+t=6,
∴t=;
(2)當(dāng)⊙Q經(jīng)過A點時,如圖
OQ=OA﹣QA=4,
∴t==4s,
∴PA=4,
∴BP=AB﹣PA=6,
過點P作PE⊥OB于點E,⊙P與OB相交于點F、G,
連接PF,
∴PE∥OA,
∴△PEB∽△AOB,
∴,
∴PE=3.6,
∴由勾股定理可求得:EF=,
由垂徑定理可求知:FG=2EF=;
(3)當(dāng)QC與⊙P相切時,如圖
此時∠QCA=90°,
∵OQ=AP=t,
∴AQ=6﹣t,AC=2t,
∵∠A=∠A,
∠QCA=∠ABO,
∴△AQC∽△ABO,
∴,
∴,
∴t=,
∴當(dāng)0<t≤時,⊙P與QC只有一個交點,
當(dāng)QC⊥OA時,
此時Q與D重合,
由(1)可知:t=,
∴當(dāng)<t≤5時,⊙P與QC只有一個交點,
綜上所述,當(dāng),⊙P與QC只有一個交點,t的取值范圍為:0<t≤或<t≤5.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,P為BC上一點,D為AC上一點,且∠APD=60°,BP=2,CD=1,則△ABC的邊長為( )
A.3B.4C.5D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】單靠“死”記還不行,還得“活”用,姑且稱之為“先死后活”吧。讓學(xué)生把一周看到或聽到的新鮮事記下來,摒棄那些假話套話空話,寫出自己的真情實感,篇幅可長可短,并要求運用積累的成語、名言警句等,定期檢查點評,選擇優(yōu)秀篇目在班里朗讀或展出。這樣,即鞏固了所學(xué)的材料,又鍛煉了學(xué)生的寫作能力,同時還培養(yǎng)了學(xué)生的觀察能力、思維能力等等,達到“一石多鳥”的效果。 如圖,由兩個相同的正方體和一個圓錐體組成一個立體圖形,其左視圖是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】應(yīng)我市創(chuàng)建文明城市要求,某小區(qū)業(yè)主委員會決定把一塊長,寬的矩形空地建成,花園小廣場,設(shè)計方案如圖所示,陰影區(qū)域為綠化區(qū)(四塊綠化區(qū)為全等的直角三角形),空白區(qū)域為活動區(qū),且四周出口寬度-樣,其寬度不小于,不大于,預(yù)計活動區(qū)造價,綠化區(qū)造價,設(shè)綠化區(qū)較長直角邊為.
(1)求工程隊總造價 (元)與的函數(shù)關(guān)系式,并求出x的取值范圍;
(2)如果業(yè)主委員會最多投資萬元,能否完成全部工程?若能,請寫出為整數(shù)的所有工程方案;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校決定從甲、乙兩名同學(xué)中選拔一人參加“誦讀經(jīng)典”大賽,在相同的測試條件下,甲、乙兩人5次測試成績(單位:分)如下:
甲:79,86,82,85,83.
乙:88,81,85,81,80.
請回答下列問題:
(1)甲成績的中位數(shù)是______,乙成績的眾數(shù)是______;
(2)經(jīng)計算知,.請你求出甲的方差,并從平均數(shù)和方差的角度推薦參加比賽的合適人選.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+3經(jīng)過點A(﹣1,0),B(3,0),與y軸交于點C.點D(xD,yD)為拋物線上一個動點,其中1<xD<3.連接AC,BC,DB,DC.
(1)求該拋物線的解析式;
(2)當(dāng)△BCD的面積等于△AOC的面積的2倍時,求點D的坐標(biāo);
(3)在(2)的條件下,若點M是x軸上一動點,點N是拋物線上一動點,試判斷是否存在這樣的點M,使得以點B,D,M,N為頂點的四邊形是平行四邊形.若存在,求出點M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰直角△ABC中,CA=CB,點E為△ABC外一點,CE=CA,且CD平分∠ACB交AE于D,且∠CDE=60°.
(1)求證:△CBE為等邊三角形;
(2)若AD=5,DE=7,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】周末,小華和小亮想用所學(xué)的數(shù)學(xué)知識測量家門前小河的寬.測量時,他們選擇了河對岸邊的一棵大樹,將其底部作為點A,在他們所在的岸邊選擇了點B,使得AB與河岸垂直,并在B點豎起標(biāo)桿BC,再在AB的延長線上選擇點D豎起標(biāo)桿DE,使得點E與點C、A共線.
已知:CB⊥AD,ED⊥AD,測得BC=1m,DE=1.5m,BD=8.5m.測量示意圖如圖所示.請根據(jù)相關(guān)測量信息,求河寬AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C,D是拋物線y=(x+1)2﹣5上兩點,拋物線的頂點為E,CD∥x軸,四邊形ABCD為正方形,AB邊經(jīng)過點E,則正方形ABCD的邊長為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com