2013年12月15日,我國“玉兔號”月球車順利抵達(dá)月球表面.月球離地球平均距離是384 400 000米,數(shù)據(jù)384 400 000用科學(xué)記數(shù)法表示為( )
(A)3.844×108 (B)3.844×107 (C)3.844×106 (D)38.44×106
A.
【解析】
試題分析:根據(jù)科學(xué)記數(shù)法的定義,科學(xué)記數(shù)法的表示形式為a×10n,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值. 在確定n的值時,看該數(shù)是大于或等于1還是小于1. 當(dāng)該數(shù)大于或等于1時,n為它的整數(shù)位數(shù)減1;當(dāng)該數(shù)小于1時,-n為它第一個有效數(shù)字前0的個數(shù)(含小數(shù)點(diǎn)前的1個0).因此,
∵384 400 000一共9位,∴384 400 000=3.844×108. 故選A.
考點(diǎn):科學(xué)記數(shù)法.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(湖北武漢卷)數(shù)學(xué)(解析版) 題型:解答題
如圖,已知直線AB:與拋物線交于A、B兩點(diǎn),
(1)直線AB總經(jīng)過一個定點(diǎn)C,請直接寫出點(diǎn)C坐標(biāo);
(2)當(dāng)時,在直線AB下方的拋物線上求點(diǎn)P,使△ABP的面積等于5;
(3)若在拋物線上存在定點(diǎn)D使∠ADB=90°,求點(diǎn)D到直線AB的最大距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(湖北宜昌卷)數(shù)學(xué)(解析版) 題型:選擇題
2014年3月,YC市舉辦了首屆中學(xué)生漢字聽寫大會,從甲、乙、丙、丁4套題中隨機(jī)抽取一套訓(xùn)練,抽中甲的概率是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(浙江舟山卷)數(shù)學(xué)(解析版) 題型:填空題
過點(diǎn)(-1,7)的一條直線與x軸,y軸分別相交于點(diǎn)A,B,且與直線平行.則在線段AB上,橫、縱坐標(biāo)都是整數(shù)的點(diǎn)的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(浙江舟山卷)數(shù)學(xué)(解析版) 題型:選擇題
一個圓錐的側(cè)面展開圖是半徑為6的半圓,則這個圓錐的底面半徑為( )
(A)1.5 (B)2 (C)2.5 (D)3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(浙江湖州卷)數(shù)學(xué)(解析版) 題型:解答題
已知某市2013年企業(yè)用水量x(噸)與該月應(yīng)交的水費(fèi)y(元)之間的函數(shù)關(guān)系如圖.
(1)當(dāng)x≥50時,求y關(guān)于x的函數(shù)關(guān)系式;
(2)若某企業(yè)2013年10月份的水費(fèi)為620元,求該企業(yè)2013年10月份的用水量;
(3)為貫徹省委“五水共治”發(fā)展戰(zhàn)略,鼓勵企業(yè)節(jié)約用水,該市自2014年1月開始對月用水量超過80噸的企業(yè)加收污水處理費(fèi),規(guī)定:若企業(yè)月用水量x超過80噸,則除按2013年收費(fèi)標(biāo)準(zhǔn)收取水費(fèi)外,超過80噸部分每噸另加收元,若某企業(yè)2014年3月份的水費(fèi)和污水處理費(fèi)共600元,求這個企業(yè)該月的用水量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(浙江湖州卷)數(shù)學(xué)(解析版) 題型:填空題
如圖,已知在Rt△OAC中,O為坐標(biāo)原點(diǎn),直角頂點(diǎn)C在x軸的正半軸上,反比例函數(shù)(k≠0)在第一象限的圖象經(jīng)過OA的中點(diǎn)B,交AC于點(diǎn)D,連接OD.若△OCD∽△ACO,則直線OA的解析式為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(浙江溫州卷)數(shù)學(xué)(解析版) 題型:解答題
勾股定理神秘而美妙,它的證法多樣,其巧妙各有不同,其中的“面積法”給了小聰以靈感。他驚喜地發(fā)現(xiàn):當(dāng)兩個全等的直角三角形如圖1或圖2擺放時,都可以用“面積法”來證明.下面是小聰利用圖1證明勾股定理的過程:
將兩個全等的直角三角形按圖1所示擺放,其中∠DAB=90°,求證:.
證明:連結(jié)DB,過點(diǎn)D作BC邊上的高DF,
則DF=EC=,
∵ ,
又∵,
∴,
∴
請參照上述證法,利用圖2完成下面的證明:
將兩個全等的直角三角形按圖2所示擺放,其中∠DAB=90°.
求證:.
證明:連結(jié) ,
∵ ,
又∵ ,
∴ .
∴ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2014年初中畢業(yè)升學(xué)考試(浙江杭州卷)數(shù)學(xué)(解析版) 題型:選擇題
已知邊長為a的正方形面積為8,則下列關(guān)于a的說法中,錯誤的是( )
A. a是無理數(shù) B.a是方程的解
C.a是8的算術(shù)平方根 D.a滿足不等式組
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com