【題目】完成下面的說理過程.
已知:如圖,OA=OB,AC=BC.
試說明:∠AOC=∠BOC.
解:在△AOC和△BOC中,
因為OA=______,AC=______,OC=______,
所以________≌________(SSS),
所以∠AOC=∠BOC(__________________).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,BA1和CA1分別是△ABC的內(nèi)角平分線和外角平分線,BA2是∠A1BD的平分線,CA2是∠A1CD的平分線,BA3是∠A2BD的平分線,CA3是∠A2CD的平分線.若∠A1=α,則∠A2019=________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點O(0,0),A(0,1)是正方形OAA1B的兩個頂點,以OA1對角線為邊作正方形OA1A2B1 , 再以正方形的對角線OA2作正方形OA1A2B1 , …,依此規(guī)律,則點A2017的坐標是( )
A.(0,21008)
B.( , )
C.( ,0)
D.( ,- )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知直線 l1 經(jīng)過點 A(5,0)和點 B(,﹣5)
(1)求直線 l1 的表達式;
(2)設直線 l2 的解析式為 y=﹣2x+2,且 l2 與 x 軸交于點 D,直線 l1 交 l2 于點 C, 求△CAD 的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知∠AOB=120°,∠COD=60°,OE平分∠BOC
(1)如圖1.當∠COD在∠AOB的內(nèi)部時
①若∠AOC=39°40′,求∠DOE的度數(shù);
②若∠AOC=α,求∠DOE的度數(shù)(用含α的代數(shù)式表示),
(2)如圖2,當∠COD在∠AOB的外部時,(1)中∠AOC與∠DOE的數(shù)量關(guān)系還成立嗎?若成立,請推導出∠AOC與∠DOE的度數(shù)之間的關(guān)系;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O是△ABC的內(nèi)切圓,切點分別為D、E、F,∠A=80°,點P為⊙O上任意一點(不與E、F重合),則∠EPF= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】以直線AB上一點O為端點作射線OC,使∠BOC=60°,將一個直角三角形的直角頂點放在點O處.(注:∠DOE=90°)
(1)如圖1,若直角三角板DOE的一邊OD放在射線OB上,則∠COE= °;
(2)如圖2,將直角三角板DOE繞點O逆時針方向轉(zhuǎn)動到某個位置,若OE恰好平分∠AOC,請說明OD所在射線是∠BOC的平分線;
(3)如圖3,將三角板DOE繞點O逆時針轉(zhuǎn)動到某個位置時,若恰好∠COD=∠AOE,求∠BOD的度數(shù)?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖示,AB∥CD,且點E在射線AB與CD之間,請說明∠AEC=∠A+∠C的理由.
(2)現(xiàn)在如圖b示,仍有AB∥CD,但點E在AB與CD的上方,①請嘗試探索∠1,∠2,∠E三者的數(shù)量關(guān)系. ②請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB、CD相交于點O,OE是∠AOD的平分線,若∠AOC=60°,OF⊥OE.
(1)判斷OF把∠AOC所分成的兩個角的大小關(guān)系并證明你的結(jié)論;
(2)求∠BOE的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com