【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,它與x軸的兩個交點分別為(﹣1,0),(3,0).對于下列命題:①b2a=0;②abc0;③a2b+4c0;④8a+c0.其中正確的有(

A.3B.2C.1D.0

【答案】B

【解析】

首先根據(jù)二次函數(shù)圖象開口方向可得a0,根據(jù)圖象與y軸交點可得c0,再根據(jù)二次函數(shù)的對稱軸x=-,結合圖象與x軸的交點可得對稱軸為x=1,結合對稱軸公式可判斷出①的正誤;根據(jù)對稱軸公式結合a的取值可判定出b0,根據(jù)a、b、c的正負即可判斷出②的正誤;利用a-b+c=0,求出a-2b+4c0,再利用當x=4時,y0,則16a+4b+c0,由①知,b=-2a,得出8a+c0

根據(jù)圖象可得:a0,c0,對稱軸:

①∵它與x軸的兩個交點分別為(﹣1,0),(30),對稱軸是x=1,

∴b+2a=0.故命題錯誤.

②∵a0,,∴b0

c0,∴abc0.故命題錯誤.

③∵b+2a=0,∴a2b+4c=a+2b4b+4c=4b+4c

∵ab+c=0∴4a4b+4c=04b+4c=4a

∵a0,∴a2b+4c=4b+4c=4a0.故命題正確.

根據(jù)圖示知,當x=4時,y0,∴16a+4b+c0

知,b=2a,∴8a+c0.故命題正確.

正確的命題為:①③三個.

故選B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】有一種落地晾衣架如圖1所示,其原理是通過改變兩根支撐桿夾角的度數(shù)來調整晾衣桿的高度. 2是支撐桿的平面示意圖,ABCD分別是兩根不同長度的支撐桿,夾角∠BOD=. AO=85cm,BO=DO=65cm. : ,較長支撐桿的端點離地面的高度約為_____.(參考數(shù)據(jù):,.)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,ABAC2tanB3,點D為邊AB上一動點,在直線DC上方作∠EDC=∠ECD=∠B,得到EDC,則CE最小值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學課上學習了圓周角的概念和性質:頂點在圓上,兩邊與圓相交,同弧所對的圓周角相等,小明在課后繼續(xù)對圓外角和圓內(nèi)角進行了探究.

下面是他的探究過程,請補充完整:

定義概念:頂點在圓外,兩邊與圓相交的角叫做圓外角,頂點在圓內(nèi),兩邊與圓相交的角叫做圓內(nèi)角.如圖1,∠M所對的一個圓外角.

(1)請在圖2中畫出所對的一個圓內(nèi)角;

提出猜想

(2)通過多次畫圖、測量,獲得了兩個猜想:一條弧所對的圓外角______這條弧所對的圓周角;一條弧所對的圓內(nèi)角______這條弧所對的圓周角;(大于、等于小于”)

推理證明:

(3)利用圖1或圖2,在以上兩個猜想中任選一個進行證明;

問題解決

經(jīng)過證明后,上述兩個猜想都是正確的,繼續(xù)探究發(fā)現(xiàn),還可以解決下面的問題.

(4)如圖3,F,H是∠CDE的邊DC上兩點,在邊DE上找一點P使得∠FPH最大.請簡述如何確定點P的位置.(寫出思路即可,不要求寫出作法和畫圖)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)先化簡,再求值:其中,a是方程x2+3x+10的根.

2)已知拋物線yax2+bx+c的對稱軸為x2,且經(jīng)過點(1,4)和(5,0),試求該拋物線的表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線yax2+bx+ca≠0)的對稱軸為直線x=﹣1,且拋物線經(jīng)過A1,0),C0,3)兩點,與x軸交于點B

1)若直線ymx+n經(jīng)過B、C兩點,求直線BC和拋物線的解析式;

2)在拋物線的對稱軸x=﹣1上找一點M,使點M到點A的距離與到點C的距離之和最小,求出點M的坐標:

3)在拋物線上存在點P(不與C重合),使得APB的面積與ACB的面積相等,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD中,點PCD的中點,∠BCD=60°,射線APBC的延長線于點E,射線BPDE于點K,點O是線段BK的中點.

1)求證:△ADP≌△ECP

2)若BP=nPK,試求出n的值;

3)作BMAE于點M,作KNAE于點N,連結MO、NO,如圖2所示,請證明△MON是等腰三角形,并直接寫出∠MON的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知矩形的邊長.某一時刻,動點點出發(fā)沿方向以的速度向點勻速運動;同時,動點點出發(fā)沿方向以的速度向點勻速運動,問:

1)經(jīng)過多少時間,的面積等于矩形面積的?

2)是否存在時間t,使的面積達到3.5cm2,若存在,求出時間t,若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)yx23x+4

1)配方成yaxh2+k的形式;

2)求出它的圖象的開口方向對稱軸頂點坐標;

3)求當y0x的取值范圍.

查看答案和解析>>

同步練習冊答案