【題目】如圖,已知反比例函數(shù)的圖象與一次函數(shù)y=x+b的圖象交于點(diǎn)A(1,4),點(diǎn)B(n,-1).
(1)求n和b的值;
(2)直接寫出一次函數(shù)值小于反比例函數(shù)值的自變量x的取值范圍.
【答案】(1)b=3,
(2)x<-4或0<x<1.
【解析】
(1)把點(diǎn)A坐標(biāo)分別代入反比例函數(shù),一次函數(shù)y=x+b,求出k、b的值,再把點(diǎn)B的坐標(biāo)代入反比例函數(shù)解析式求出n的值,即可得出答案;
(2)根據(jù)A、B的坐標(biāo)結(jié)合圖象即可得出答案.
解:(1)把A點(diǎn)(1,4)分別代入反比例函數(shù),一次函數(shù)y=x+b,
得k=1×4,1+b=4,解得k=4,b=3,
∵點(diǎn)B(n,-1)也在反比例函數(shù)的圖象上,∴
(2)∵B(﹣4,﹣1),A(1,4),
∴據(jù)圖象可知:當(dāng)x<-4或0<x<1時,一次函數(shù)值小于反比例函數(shù)值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場購進(jìn)一種每件價格為100元的新商品,在商場試銷發(fā)現(xiàn):銷售單價x(元/件)與每天銷售量y(件)之間滿足如圖所示的關(guān)系:
(1)求出y與x之間的函數(shù)關(guān)系式;
(2)寫出每天的利潤W與銷售單價x之間的函數(shù)關(guān)系式;若你是商場負(fù)責(zé)人,會將售價定為多少,來保證每天獲得的利潤最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線與x軸、y軸分別交于A、B兩點(diǎn),P是以C(0,1)為圓心,1為半徑的圓上一動點(diǎn),連結(jié)PA、PB.則△PAB面積的最大值是( )
A.8B.12C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一條長為40cm的鐵絲剪成兩段,并以每一段鐵絲的長度為周長做成一個正方形.
(1)要使這兩個正方形的面積之和等于52cm2,那么這段鐵絲剪成兩段后的長度分別是多少?
(2)兩個正方形的面積之和可能等于48cm2嗎?若能,求出兩段鐵絲的長度;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E是正方形ABCD的邊BC上一點(diǎn),連接AE,將線段AE繞點(diǎn)E順時針旋轉(zhuǎn)一定的角度得到EF,點(diǎn)C在EF上,連接AF交邊CD于點(diǎn)G.
(1)若AB=4,BF=8,求CE的長;
(2)求證:AE=BE+DG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD是正方形,△ADF旋轉(zhuǎn)一定角度后得到△ABE,如圖所示,如果AF=4,AB=7
(1)指出旋轉(zhuǎn)中心和旋轉(zhuǎn)角度.
(2)求DE的長度.
(3)BE與DF垂直嗎? 說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在紙片中,,,.如圖,直角頂點(diǎn)在原點(diǎn),點(diǎn)在軸負(fù)半軸上,當(dāng)點(diǎn)在軸上向上移動時,點(diǎn)也隨之在軸上向右移動,當(dāng)點(diǎn)到達(dá)原點(diǎn)時,點(diǎn)停止移動.在移動過程中,點(diǎn)到原點(diǎn)的最大距離是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,經(jīng)過矩形的頂點(diǎn),且與,相交于點(diǎn),,,,在圓心同側(cè).已知,.
(1)的長為__________.
(2)若的半徑長為,則________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:甲、乙兩車分別從相距300km的A,B兩地同時出發(fā)相向而行,甲到B地后立即返回,下圖是它們離各自出發(fā)地的距離y與行駛時間x之間的函數(shù)圖象.
(1)求甲車離出發(fā)地的距離y與行駛時間x之間的函數(shù)關(guān)系式,并標(biāo)明自變量的取值范圍;
(2)若已知乙車行駛的速度是40千米/小時,求出發(fā)后多長時間,兩車離各自出發(fā)地的距離相等;
(3)它們在行駛過程中有幾次相遇.并求出每次相遇的時間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com