【題目】小紅同學要測量,兩地的距離,但,之間有一水池,不能直接測量,于是她在,同一水平面上選取了一點,點可直接到達,兩地.她測量得到米,米,.請你幫助小紅同學求出,兩點之間的距離.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AD⊥BC,EG⊥BC,垂足分別為D、G、AD平分∠BAC,求證:∠E=∠4.
證明:∵AD⊥BC,EG⊥BC(已知)
∴AD∥EG( )
∴∠2=∠3( )
∠1= (兩直線平行,同位角相等)
∵AD平分∠BAC(已知)
∴∠1=∠2( )
∴∠E=∠3( )
∵∠3=∠4( )
∴∠E=∠4(等量代換)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小瑩用一張長方形紙片ABCD進行折紙,已知該紙片寬AB為8cm,BC長為10cm.當小瑩折疊時,頂點D落在BC邊上的點F處(折痕為AE).則此時EC=( )cm
A.4B.C.D.3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某飲料經(jīng)營部每天的固定成本為200元,其銷售的飲料每瓶進價為5元.銷售單價與日平均銷售的關系如下:
銷售單價(元) | 6 | 6.5 | 7 | 7.5 | 8 | 8.5 | 9 |
日平均銷售量(瓶) | 480 | 460 | 440 | 420 | 400 | 380 | 360 |
(1)若記銷售單價比每瓶進價多x元,則銷售量為_____(用含x的代數(shù)式表示);
求日均毛利潤(日均毛利潤=(每瓶售價-每瓶進價)×日均銷售量-固定成本)y與x之間的函數(shù)關系式.
(2)若要使日均毛利潤達到1400元,則銷售單價應定為多少元?
(3)若要使日均毛利潤達到最大,銷售單價應定為多少元?最大日均毛利潤為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,長方形OABC中,O為平面直角坐標系的原點,A點的坐標為,C點的坐標為,點B在第一象限內(nèi),點P從原點出發(fā),以每秒2個單位長度的速度沿著的路線移動即:沿著長方形移動一周.
寫出點B的坐標______
當點P移動了4秒時,描出此時P點的位置,并求出點P的坐標.
在移動過程中,當點P到x軸距離為5個單位長度時,求點P移動的時間.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于一次函數(shù),下列結論正確的是( )
A.函數(shù)值隨自變量的增大而增大
B.函數(shù)的圖象不經(jīng)過第一象限
C.函數(shù)的圖象向下平移4個單位長度得的圖象
D.函數(shù)的圖象與軸的交點坐標是
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,A(a,0)是x軸正半軸上一點,C是第四象限一點,CB⊥y軸,交y軸負半軸于B(0,b),且(a-3)2+|b+4|=0,S四邊形AOBC=16.
(1)求C點坐標;
(2)如圖2,設D為線段OB上一動點,當AD⊥AC時,∠ODA的角平分線與∠CAE的角平分線的反向延長線交于點P,求∠APD的度數(shù).
(3)如圖3,當D點在線段OB上運動時,作DM⊥AD交BC于M點,∠BMD、∠DAO的平分線交于N點,則D點在運動過程中,∠N的大小是否變化?若不變,求出其值,若變化,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點 A(﹣2,0),B(2,0),C(0,2),點 D,點E分別是 AC,BC的中點,將△CDE繞點C逆時針旋轉得到△CD′E′,及旋轉角為α,連接 AD′,BE′.
(1)如圖①,若 0°<α<90°,當 AD′∥CE′時,求α的大小;
(2)如圖②,若 90°<α<180°,當點 D′落在線段 BE′上時,求 sin∠CBE′的值;
(3)若直線AD′與直線BE′相交于點P,求點P的橫坐標m的取值范圍(直接寫出結果即可).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(12分)如圖,在平面直角坐標系中,O為原點,平行四邊形ABCD的邊BC在x軸上,D點在y軸上,C點坐標為(2,0),BC=6,∠BCD=60°,點E是AB上一點,AE=3EB,⊙P過D,O,C三點,拋物線過點D,B,C三點.
(1)求拋物線的解析式;
(2)求證:ED是⊙P的切線;
(3)若將△ADE繞點D逆時針旋轉90°,E點的對應點E′會落在拋物線上嗎?請說明理由;
(4)若點M為此拋物線的頂點,平面上是否存在點N,使得以點B,D,M,N為頂點的四邊形為平行四邊形?若存在,請直接寫出點N的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com