【題目】定義:我們知道,四邊形的一條對角線把這個四邊形分成兩個三角形,如果這兩個三角形相似但不全等,我們就把這條對角線叫做這個四邊形的相似對角線,在四邊形ABCD中,對角線BD是它的相似對角線,∠ABC=70°,BD平分∠ABC,那么∠ADC=____________

【答案】145

【解析】

先畫出示意圖,由相似三角形的判定可知,在△ABD和△DBC中,已知∠ABD=CBD,所以需另一組對應(yīng)角相等,若∠A=C,則△ABD與△DBC全等不符合題意,所以必定有∠A=BDC,再根據(jù)四邊形的內(nèi)角和為360°列式求解.

解:根據(jù)題意畫出示意圖,已知∠ABD=CBD,

ABD與△DBC相似,但不全等,

∴∠A=BDC,∠ADB=C.

又∠A+ABC+C+ADC=360°,

2ADB+2BDC+ABC=360°,

∴∠ADB+BDC=145°,

即∠ADC=145°.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,某數(shù)學活動小組選定測量小河對岸大樹BC的高度,他們在斜坡上D處測得大樹頂端B的仰角是30°,朝大樹方向下坡走6米到達坡底A處,在A處測得大樹頂端B的仰角是45°,若坡角∠FAE=30°,求大樹的高度(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,已知拋物線軸交于兩點,與軸交于點,已知點為拋物線第一象限上一動點,連接、.

1)求拋物線的解析式,并直接寫出拋物線的頂點坐標;

2)當的面積最大時,求出點的坐標;

3)如圖②,當點與拋物線頂點重合時,過點的直線與拋物線交于點,在直線上方的拋物線上是否存在一點,使得?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖, 拋物線軸交于點A(-1,0),頂點坐標(1,n)與軸的交點在(0,2),(0,3)之間(包 含端點),則下列結(jié)論:①;②;③對于任意實數(shù)m,總成立;④關(guān)于的方程有兩個不相等的實數(shù)根.其中結(jié)論正確的個數(shù)為  

A. 1 個 B. 2 個 C. 3 個 D. 4 個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC內(nèi)接與⊙O,AB是直徑,⊙O的切線PCBA的延長線于點P,OF∥BCACACE,交PC于點F,連接AF

1)判斷AF⊙O的位置關(guān)系并說明理由;

2)若⊙O的半徑為4,AF=3,求AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校九年級數(shù)學興趣小組的學生進行社會實踐活動時,想利用所學的解直角三角形的知識測量教學樓的高度,他們先在點D處用測角儀測得樓頂M的仰角為30°,再沿DF方向前行40米到達點E處,在點E處測得樓頂M的仰角為45°,已知測角儀的高AD1.5米,請根據(jù)他們的測量數(shù)據(jù)求此樓MF的高(結(jié)果精確到0.1m,參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一般捕魚船在A處發(fā)出求救信號,位于A處正西方向的B處有一艘救援艇決定前去數(shù)援,但兩船之間有大片暗礁,無法直線到達.救援艇決定馬上調(diào)整方向,先向北偏東方以每小時30海里的速度航行,同時捕魚船向正北低速航行.30分鐘后,捕魚船到達距離A海里的D處,此時救援艇在C處測得D處在南偏東的方向上.

C、D兩點的距離;

捕魚船繼續(xù)低速向北航行,救援艇決定再次調(diào)整航向,沿CE方向前去救援,并且捕魚船和救援艇同達時到E處,若兩船航速不變,求的正弦值.參考數(shù)據(jù):,,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:關(guān)于x的一元二次方程x2m1x+m+2=0

1若方程有兩個相等的實數(shù)根求m的值;

2RtABC中,C=90°,tanA的值恰為1中方程的根,求cosB的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,BPC是等邊三角形,BP、CP的延長線分別交AD于點EF,連結(jié)BDDP,BDCF相交于點H.給出下列結(jié)論,其中正確結(jié)論的個數(shù)是(

①△BDE∽△DPE;②;③;④tanDBE=.

A.4B.3C.2D.1

查看答案和解析>>

同步練習冊答案