【題目】如圖,直線AB和直線CD,直線BE和直線CF都被直線BC所截,在下面三個式子只,請你選擇其中兩個作為題設(shè),剩下的一個作為結(jié)論,組成一個真命題并寫出對應(yīng)的推理過程

題設(shè)已知;______

結(jié)論求證:______

理由:

【答案】;

【解析】

可以由①②得到③:由于ABCD、BECF,利用平行線的性質(zhì)得到∠ABC=DCB,又BECF,則∠EBC=FCB,可得到∠ABC-EBC=DCB-FCB,即有∠1=2.(答案不唯一)

已知:如圖,ABCD、BECE,

求證:∠1=2.

證明:如圖,

ABCD,

∴∠ABC=DCB,

又∵BECF,

∴∠EBC=FCB,

∴∠ABC-EBC=DCB-FCB,

∴∠1=2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,直線a經(jīng)過正方形ABCD的頂點A,分別過正方形的頂點B、DBFa于點F,DEa于點E,若DE=8,BF=5,則EF的長為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,點M,N分別在AB,BC上,將△BMN沿MN翻折得到△FMN,若MF∥AD,F(xiàn)N∥DC,則∠D的度數(shù)為( )

A. 115° B. 105° C. 95° D. 85°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,∠A=∠C=90°,∠ABC=135°,CD=6,AB=2,則四邊形ABCD的面積為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB:y=kx+2kx軸于點A,交y軸正半軸于點B,且SOAB=3

(1) A、B兩點的坐標(biāo)

(2) 將直線ABA點順時針旋轉(zhuǎn)45°,交y軸于點C,求直線AC的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】八年級(1)班學(xué)生在完成課題學(xué)習(xí)“體質(zhì)健康測試中的數(shù)據(jù)分析”后,利用課外活動時間積極參加體育鍛煉,每位同學(xué)從籃球、跳繩、立定跳遠、長跑、鉛球中選一項進行訓(xùn)練,訓(xùn)練后都進行了測試.現(xiàn)將項目選擇情況及訓(xùn)練后籃球定時定點投籃測試成績整理后作出如下統(tǒng)計圖.
請你根據(jù)上面提供的信息回答下列問題:
(1)扇形圖中跳繩部分的扇形圓心角為度,該班共有學(xué)生人,訓(xùn)練后籃球定時定點投籃平均每個人的進球數(shù)是
(2)老師決定從選擇鉛球訓(xùn)練的3名男生和1名女生中任選兩名學(xué)生先進行測試,請用列表或畫樹形圖的方法求恰好選中兩名男生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D為⊙O上一點,點C在直徑BA的延長線上,且∠CDA=∠CBD.
(1)求證:CD是⊙O的切線;
(2)過點B作⊙O的切線交CD的延長線于點E,BC=6, .求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位線,點M是邊BC上一點,BM=3,點N是線段MC上的一個動點,連接DN,ME,DN與ME相交于點O.若△OMN是直角三角形,則DO的長是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國古籍《周髀算經(jīng)》中早有記載“勾三股四弦五”,下面我們來探究兩類特殊的勾股數(shù).通過觀察完成下面兩個表格中的空格(以下a、b、c為Rt△ABC的三邊,且a<b<c):

表一

a

b

c

3

4

5

5

12

13

7

24

25

9

41

表二

a

b

c

6

8

10

8

15

17

10

24

26

12

41

(1)仔細(xì)觀察,表一中a為大于1的奇數(shù),此時b、c的數(shù)量關(guān)系是   ,a、b、c之間的數(shù)量關(guān)系是   ;

(2)仔細(xì)觀察,表二中a為大于4的偶數(shù),此時b、c的數(shù)量關(guān)系是   ,a、b、c之間的數(shù)量關(guān)系是   ;

(3)我們還發(fā)現(xiàn),表一中的三邊長“3,4,5”與表二中的“6,8,10”成倍數(shù)關(guān)系,表一中的“5,12,13”與表二中的“10,24,26”恰好也成倍數(shù)關(guān)系……請直接利用這一規(guī)律計算:在Rt△ABC中,當(dāng),b=時,斜邊c的值.

查看答案和解析>>

同步練習(xí)冊答案