【題目】如圖1,點(diǎn)E為正方形ABCD的邊AB上一點(diǎn),EFEC,且EF=EC,連接AF.

(1)求EAF的度數(shù);

(2)如圖2,連接FC交BD于M,交AD于N.求證:BD=AF+2DM.

【答案】(1)∠EAF=135°.(2)詳見解析.

【解析】

(1)過點(diǎn)FFM⊥AB并交AB的延長線于點(diǎn)M,只要證明△EBC≌△FME(AAS)即可解決問題;
(2)過點(diǎn)FFG∥ABBD于點(diǎn)G.首先證明四邊形ABGF為平行四邊形,再證明△FGM≌△DMC(AAS)即可解決問題;

(1)解:過點(diǎn)FFMAB并交AB的延長線于點(diǎn)M,

∵四邊形ABCD是正方形,

∴∠B=M=CEF=90°,

∴∠MEF+CEB=90°,CEB+BCE=90°,

∴∠MEF=ECB,

EC=EF,

∴△EBC≌△FME(AAS)

FM=BE

EM=BC

BC=AB,

EM=AB,

EM﹣AE=AB﹣AE

AM=BE,

FM=AM,

FMAB,

∴∠MAF=45°,

∴∠EAF=135°.

(2)證明:過點(diǎn)FFGABBD于點(diǎn)G.

由(1)可知∠EAF=135°,

∵∠ABD=45°

∴∠EAF+ABD=180°,

AFBG,

FGAB,

∴四邊形ABGF為平行四邊形,

AF=BG,F(xiàn)G=AB,

AB=CD,

FG=CD,

ABCD,

FGCD,

∴∠FGM=CDM,

∵∠FMG=CMD

∴△FGM≌△CDM(AAS),

GM=DM,

DG=2DM,

BD=BG+DG=AF+2DM.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在四邊形ABCD中,AB=AD,∠B+ADC=180°,點(diǎn)E,F分別在四邊形ABCD的邊BC,CD上,∠EAF=BAD,連接EF,試猜想EF,BEDF之間的數(shù)量關(guān)系.

1)思路梳理

ABE繞點(diǎn)A逆時針旋轉(zhuǎn)至ADG,使ABAD重合,由∠B+ADC=180°,得∠FDG=180°,即點(diǎn)F,DG三點(diǎn)共線,易證AFG≌△AFE,故EF,BE,DF之間的數(shù)量關(guān)系為__;

2)類比引申

如圖2,在圖1的條件下,若點(diǎn)E,F由原來的位置分別變到四邊形ABCD的邊CB,DC延長線上,∠EAF=BAD,連接EF,試猜想EF,BE,DF之間的數(shù)量關(guān)系,并給出證明.

3)聯(lián)想拓展

如圖3,在ABC中,∠BAC=90°AB=AC,點(diǎn)D,E均在邊BC上,且∠DAE=45°,若BD=1,EC=2,直接寫出DE的長為________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果批發(fā)市場,草莓的批發(fā)價格是每箱元,蘋果的批發(fā)價格是每箱.

(1)若李心批發(fā)草莓,蘋果共,剛好花費(fèi)元,則他購買草莓、蘋果各多少箱.

(2)李心有甲,乙兩個店鋪,每個店鋪在同一時間段內(nèi)都能售出草莓,蘋果兩種水果合計箱,并且每售出一箱草莓和蘋果,甲店鋪獲毛利潤分別為元和元,乙店鋪獲毛利潤分別為元和.現(xiàn)在,李心要將批發(fā)購進(jìn)的箱草莓,箱蘋果分配給每個店鋪各.設(shè)分配給甲店草莓.

①根據(jù)信息填表:

草莓?dāng)?shù)量(箱)

蘋果數(shù)量(箱)

合計(箱)

甲店

乙店

②設(shè)李心獲取的總毛利潤為元,

(1)的函數(shù)關(guān)系式:

(2)若在保證乙店鋪獲得毛利潤不少于元的前提下,應(yīng)怎樣分配水果,使總毛利潤最大,最大的總毛利潤是多少元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,D、EAB上,且D、E分別是AC、BC的垂直平分線上一點(diǎn).

(1)若CDE的周長為4,求AB的長;

(2)若∠ACB=100°,求∠DCE的度數(shù);

(3)若∠ACB=a(90°<a<180°),則∠DCE=___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】過矩形ABCD的對角線AC的中點(diǎn)OEFAC,交BC邊于點(diǎn)E,交AD邊于點(diǎn)F,分別連接AE,CF

1)求證:四邊形AECF是菱形;

2)若AB6,AC10,EC,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店將進(jìn)價為8元的商品按每件10元售出,每天可售出200件,現(xiàn)在采取提高商品售價減少銷售量的辦法增加利潤,如果這種商品每件的銷售價每提高0.5元其銷售量就減少10件,問應(yīng)將每件售價定為多少元時,才能使每天利潤為640元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知x1,x2是一元二次方程(a﹣6x2+2ax+a=0的兩個實(shí)數(shù)根.

1)是否存在實(shí)數(shù)a,使﹣x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,請你說明理由;

2)求使(x1+1)(x2+1)為正整數(shù)的實(shí)數(shù)a的整數(shù)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,A(1,5)、B(1,0)C(4,3)

1)直接寫出△ABC的面積為_________

2)在圖形中作出△ABC關(guān)于x軸的對稱圖形△A1B1C1

3)若△DAB與△CAB全等(D點(diǎn)不與C點(diǎn)重合),則點(diǎn)D的坐標(biāo)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在以點(diǎn)O為原點(diǎn)的直角坐標(biāo)系中,一次函數(shù)y=-x+1的圖象與x軸交于A,與y軸交于點(diǎn)B,點(diǎn)C在第二象限內(nèi)且為直線AB上一點(diǎn),OC=AB,反比例函數(shù)y=的圖象經(jīng)過點(diǎn)C,則k的值為

查看答案和解析>>

同步練習(xí)冊答案