【題目】主題班會上,王老師出示了如圖所示的一幅漫畫,經過同學們的一番熱議,達成以下四個觀點:
A.放下自我,彼此尊重; B.放下利益,彼此平衡;
C.放下性格,彼此成就; D.合理競爭,合作雙贏.
要求每人選取其中一個觀點寫出自己的感悟.根據(jù)同學們的選擇情況,小明繪制了下面兩幅不完整的圖表,請根據(jù)圖表中提供的信息,解答下列問題:
觀點 | 頻數(shù) | 頻率 |
A | a | 0.2 |
B | 12 | 0.24 |
C | 8 | b |
D | 20 | 0.4 |
(1)參加本次討論的學生共有 人;表中a= ,b= ;
(2)在扇形統(tǒng)計圖中,求D所在扇形的圓心角的度數(shù);
(3)現(xiàn)準備從A,B,C,D四個觀點中任選兩個作為演講主題,請用列表或畫樹狀圖的方法求選中觀點D(合理競爭,合作雙贏)的概率.
【答案】(1)50、10、0.16;(2)144°;(3).
【解析】
(1)由B觀點的人數(shù)和所占的頻率即可求出總人數(shù);由總人數(shù)即可求出a、b的值,
(2)用360°乘以D觀點的頻率即可得;
(3)畫出樹狀圖,然后根據(jù)概率公式列式計算即可得解
(1)參加本次討論的學生共有12÷0.24=50,
則a=50×0.2=10,b=8÷50=0.16,
故答案為:50、10、0.16;
(2)D所在扇形的圓心角的度數(shù)為360°×0.4=144°;
(3)根據(jù)題意畫出樹狀圖如下:
由樹形圖可知:共有12中可能情況,選中觀點D(合理競爭,合作雙贏)的概率有6種,
所以選中觀點D(合理競爭,合作雙贏)的概率為.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊三角形ABC的邊長為4,AD是BC邊上的中線,F是AD邊上的動點,E是AC邊上一點.若AE=2,當EF+CF取得最小值時,∠ECF的度數(shù)為( )
A. 20° B. 25° C. 30° D. 45°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】中國北京已獲得2022年第24屆冬季奧林匹克運動會舉辦權,北京也將創(chuàng)造歷史,成為第一個既舉辦過夏奧會又舉辦冬奧會的城市.張家口也成為本屆冬奧會的協(xié)辦城市,為此,中國設計了第一條采用我國自主研發(fā)的北斗衛(wèi)星導航系統(tǒng)的智能化高速鐵路——京張高鐵,作為2022年北京冬奧會重要交通保障設施.已知北京至張家口鐵路,鐵路全長約180千米.按照設計,京張高鐵列車的平均行駛速度是普通快車的1.5倍,用時比普通快車用時少了20分鐘,求高鐵列車的平均行駛速度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法:①三點確定一個圓;②平分弦的直徑必垂直于這條弦;③圓周角等于圓心角的一半;④等弧所對的圓心角相等;⑤各角相等的圓內接多邊形是正多邊形.其中正確的有( )
A. 個 B. 個 C. 個 D. 個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:一個自然數(shù),右邊的數(shù)字總比左邊的數(shù)字小,我們稱它為“下滑數(shù)”(如:32,641,8531等).現(xiàn)從兩位數(shù)中任取一個,恰好是“下滑數(shù)”的概率為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知∠BAC的平分線與BC的垂直平分線DG相交于點D,DE⊥AB,DF⊥AC,垂足分別為E、F,
(1)連接CD、BD,求證:△CDF≌△BDE;
(2)若AE=5,AC=3,求BE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,在正方形ABCD中,M是BC邊(不含端點B、C)上任意一點,P是BC延長線上一點,N是的平分線上一點,若,求證:為等腰三角形.下面給出此問題一種證明的思路,你可以按這一思路繼續(xù)完成證明,也可以選擇另外的方法證明此結論.證明:在AB邊上截取AE=MC,連接ME,在正方形ABCD中,,AB=BC,(下面請你連接AN,完成余下的證明過程)
(2)若將(1)中的“正方形ABCD”改為“正三角形ABC”(如圖2),N是的平分線上一點,則當時,試探究是何種特殊三角形,并證明探究結論.
(3)若將(1)中的“正方形ABCD”改為“正邊形,試猜想:當的大小為多少時,(1)中的結論仍然成立?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,△ABC的位置如圖所示.
(1)分別寫出下列頂點的坐標:A_______,B______.
(2)頂點A關于y軸對稱的點A′的坐標為:A′_______.
(3)△ABC的面積為_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,B、A、F三點在同一直線上,(1)AD∥BC,(2)∠B=∠C,(3)AD平分∠EAC.
請你用其中兩個作為條件,另一個作為結論,構造一個真命題,并證明.
己知:______________________________________________________.
求證:______________________________________________________.
證明:
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com