【題目】問題發(fā)現(xiàn):
(1)如圖1,內(nèi)接于半徑為4的,若,則_______;
問題探究:
(2)如圖2,四邊形內(nèi)接于半徑為6的,若,求四邊形的面積最大值;
解決問題
(3)如圖3,一塊空地由三條直路(線段、AB、)和一條弧形道路圍成,點(diǎn)是道路上的一個地鐵站口,已知千米,千米,,的半徑為1千米,市政府準(zhǔn)備將這塊空地規(guī)劃為一個公園,主入口在點(diǎn)處,另外三個入口分別在點(diǎn)、、處,其中點(diǎn)在上,并在公園中修四條慢跑道,即圖中的線段、、、,是否存在一種規(guī)劃方案,使得四條慢跑道總長度(即四邊形的周長)最大?若存在,求其最大值;若不存在,說明理由.
【答案】(1);(2)四邊形ABCD的面積最大值是;(3)存在,其最大值為.
【解析】
(1)連接OA、OB,作OH⊥AB于H,利用求出∠AOH=∠AOB=,根據(jù)OA=4,利用余弦公式求出AH,即可得到AB的長;
(2)連接AC,由得出AC=,再根據(jù)四邊形的面積= ,當(dāng)DH+BM最大時(shí),四邊形ABCD的面積最大,得到BD是直徑,再將AC、BD的值代入求出四邊形面積的最大值即可;
(3)先證明△ADM≌△BMC,得到△CDM是等邊三角形,求得等邊三角形的邊長CD,再根據(jù)完全平方公式的關(guān)系得出PD=PC時(shí)PD+PC最大,根據(jù)CD、∠DPC求出PD,即可得到四邊形周長的最大值.
(1)連接OA、OB,作OH⊥AB于H,
∵,
∴∠AOB=120.
∵OH⊥AB,
∴∠AOH=∠AOB=,AH=BH=AB,
∵OA=4,
∴AH=,
∴AB=2AH=.
故答案為:.
(2)∵∠ABC=120,四邊形ABCD內(nèi)接于,
∴∠ADC=60,
∵的半徑為6,
∴由(1)得AC=,
如圖,連接AC,作DH⊥AC,BM⊥AC,
∴四邊形的面積= ,
當(dāng)DH+BM最大時(shí),四邊形ABCD的面積最大,連接BD,則BD是的直徑,
∴BD=2OA=12,BD⊥AC,
∴四邊形的面積=.
∴四邊形ABCD的面積最大值是
(3)存在;
∵千米,千米,,
∴△ADM≌△BMC,
∴DM=MC,∠AMD=∠BCM,
∵∠BCM+∠BMC=180-∠B=120,
∴∠AMD+∠BMC=120,
∴∠DMC=60,
∴△CDM是等邊三角形,
∴C、D、M三點(diǎn)共圓,
∵點(diǎn)P在弧CD上,
∴C、D、M、P四點(diǎn)共圓,
∴∠DPC=180-∠DMC=120,
∵弧的半徑為1千米,∠DMC=60,
∴CD=,
∵,
∴,
∴,
∴當(dāng)PD=PC時(shí),PD+PC最大,此時(shí)點(diǎn)P在弧CD的中點(diǎn),交DC于H ,
在Rt△DPH中,∠DHP=90,∠DPH=60,DH=DC=,
∴,
∴四邊形的周長最大值=DM+CM+DP+CP=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=BC=6cm,點(diǎn)P從點(diǎn)A出發(fā),沿AB方向以每秒cm的速度向終點(diǎn)B運(yùn)動;同時(shí),動點(diǎn)Q從點(diǎn)B出發(fā)沿BC方向以每秒1cm的速度向終點(diǎn)C運(yùn)動,將△PQC沿BC翻折,點(diǎn)P的對應(yīng)點(diǎn)為點(diǎn)P′.設(shè)點(diǎn)Q運(yùn)動的時(shí)間為t秒,若四邊形QPCP′為菱形,則t的值為( )
A. B. 2 C. 2 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,四邊形是矩形,點(diǎn),點(diǎn),點(diǎn).以點(diǎn)為中心,順時(shí)針旋轉(zhuǎn)矩形,得到矩形,點(diǎn)的對應(yīng)點(diǎn)分別為,記旋轉(zhuǎn)角為.
(1)如圖①,當(dāng)時(shí),求點(diǎn)的坐標(biāo);
(2)如圖②,當(dāng)點(diǎn)落在的延長線上時(shí),求點(diǎn)的坐標(biāo);
(3)當(dāng)點(diǎn)落在線段上時(shí),求點(diǎn)的坐標(biāo)(直接寫出結(jié)果即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是⊙的弦,交于點(diǎn),過點(diǎn)的直線交的延長線于點(diǎn),且是⊙的切線.
(1)判斷的形狀,并說明理由;
(2)若,求的長;
(3)設(shè)的面積是的面積是,且.若⊙的半徑為,求.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某中學(xué)一幢教學(xué)樓的頂部豎有一塊寫有“校訓(xùn)”的宣傳牌,米,王老師用測傾器在點(diǎn)測得點(diǎn)的仰角為,再向教學(xué)樓前進(jìn)9米到達(dá)點(diǎn),測得點(diǎn)的仰角為,若測傾器的高度米,不考慮其它因素,求教學(xué)樓的高度.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】富平因取“富庶太平”之意而得名,是華夏文明重要發(fā)祥地之一.某班舉行關(guān)于“美麗的富平”的演講活動.小明和小麗都想第一個演講,于是他們通過做游戲來決定誰第一個來演.講游戲規(guī)則是:在一個不透明的袋子中有一個黑球a和兩個白球b、c,(除顏色外其它均相同),小麗從袋子中摸出一個球,放回后攪勻,小明再從袋子中摸出一個球,若兩次摸到的球顏色相同,則小麗獲勝,否則小明獲勝,請你用樹狀圖或列表的方法分別求出小麗與小明獲勝的概率,并說明這個游戲規(guī)則對雙方公平嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)E,F分別在BC,CD上,AE=AF,AC與EF相交于點(diǎn)G.下列結(jié)論:①AC垂直平分EF;②BE+DF=EF;③當(dāng)∠DAF=15°時(shí),△AEF為等邊三角形;④當(dāng)∠EAF=60°時(shí),S△ABE=S△CEF.其中正確的是( 。
A. ①③B. ②④C. ①③④D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為4的正六邊形ABCDEF的頂點(diǎn)B、C分別在正方形AMNP的邊AM、MN上,CD與PN交于點(diǎn)H,則HN的長為_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,這個圖案是3世紀(jì)我國漢代數(shù)學(xué)家趙爽在注解《周髀算經(jīng)》時(shí)給出的,人們稱它為“趙爽弦圖”.已知AE=5,BE=3,若向正方形ABCD內(nèi)隨意投擲飛鏢(每次均落在正方形ABCD內(nèi),且落在正方形ABCD內(nèi)任何一點(diǎn)的機(jī)會均等),則恰好落在正方形EFGH內(nèi)的概率為__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com