【題目】如圖,已知二次函數的圖象經過點A(4,4)、B(5,0)和原點O.P為二次函數圖象上的一個動點,過點P作x軸的垂線,垂足為D(m,0),并與直線OA交于點C.
(1)求出二次函數的解析式;
(2)當點P在直線OA的上方時,求線段PC的最大值;
(3)當m>0時,探索是否存在點P,使得△PCO為等腰三角形,如果存在,求出P的坐標;如果不存在,請說明理由.
【答案】(1)y=﹣x2+5x;(2)當點P在直線OA的上方時,線段PC的最大值是4;(3)存在,P的坐標是(4﹣,2+3)或(4+,2﹣3)或(6,﹣6)或(5,0).
【解析】
(1)設y=ax(x﹣5),把A點坐標代入即可求出答案;
(2)根據點的坐標求出PC=﹣m2+4m,化成頂點式即可求出線段PC的最大值;
(3)當0<m<4時,僅有OC=PC,列出方程,求出方程的解即可;當m≥4時,PC=CD﹣PD=m2﹣4m,OC=m,分為三種情況:①當OC=PC時,m2﹣4m=m,求出方程的解即可得到P的坐標;同理可求:②當OC=OP時,③當PC=OP時,點P的坐標.綜合上述即可得到答案.
解:(1)設y=ax(x﹣5),
把A點坐標(4,4)代入得:4a(4﹣5)=4,
解得a=﹣1,
函數的解析式為y=﹣x2+5x,
答:二次函數的解析式是y=﹣x2+5x.
(2)解:0<m<4,PC=PD﹣CD,
∵D(m,0),PD⊥x軸,P在y=﹣x2+5x上,C在直線OA上,A(4,4),
∴P(m,﹣m2+5m),C(m,m)
∴PC=PD﹣CD=﹣m2+5m﹣m=﹣m2+4m,
=﹣(m﹣2)2+4,
∵a=﹣1<0,開口向下,
∴有最大值,
當D(2,0)時,PCmax=4,
答:當點P在直線OA的上方時,線段PC的最大值是4.
(3)當0<m<4時,僅有OC=PC,∴﹣m2+4m=m,
解得m=4﹣,
∴P(4﹣,2+3);
當m≥4時,PC=CD﹣PD=m2﹣4m,OC=m,
由勾股定理得:OP2=OD2+DP2=m2+m2(m﹣5)2,
①當OC=PC時,m2﹣4m=m,
解得:m=4+或m=0(舍去),
∴P(4+,2﹣3);
②當OC=OP時,(m)2=m2+m2(m﹣5)2,
解得:m1=6,m2=4,
∵m=4時,P和A重合,即P和C重合,不能組成△POC,
∴m=4舍去,
∴P(6,﹣6);
③當PC=OP時,m2(m﹣4)2=m2+m2(m﹣5)2,
解得:m=5,
∴P(5,0),
答:存在,P的坐標是(4﹣,2+3)或(4+,2﹣3)或(6,﹣6)或(5,0).
科目:初中數學 來源: 題型:
【題目】甲、乙兩校分別有一男一女共4名教師報名到農村中學支教.
(1)若從甲、乙兩校報名的教師中分別隨機選1名,則所選的2名教師性別相同的概率是 .
(2)若從報名的4名教師中隨機選2名,用列表或畫樹狀圖的方法求出這2名教師來自同一所學校的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一個不透明的盒子中放有四張分別寫有數字1、2、3、4的紅色卡片和三張分別寫有數字1、2、3的藍色卡片,卡片除顏色和數字外其它完全相同。
(1)從中任意抽取一張卡片,則該卡片上寫有數字1的概率是;
(2)將3張藍色卡片取出后放入另外一個不透明的盒子內,然后在兩個盒子內各任意抽取一張卡片,以紅色卡片上的數字作為十位數,藍色卡片上的數字作為個位數組成一個兩位數,求這個兩位數大于22的概率。(請利用樹狀圖或列表法說明)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,正方形OABC的頂點O與坐標原點重合,其邊長為2,點A,點C分別在軸,軸的正半軸上.函數的圖象與CB交于點D,函數(為常數,)的圖象經過點D,與AB交于點E,與函數的圖象在第三象限內交于點F,連接AF、EF.
(1)求函數的表達式,并直接寫出E、F兩點的坐標.
(2)求△AEF的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對于平面直角坐標系xOy中的點P和⊙C,給出如下定義:若⊙C上存在兩個點A,B,使得∠APB=60°,則稱P為⊙C 的關聯點。已知點D(,),E(0,-2),F(,0)
(1)當⊙O的半徑為1時,
①在點D,E,F中,⊙O的關聯點是 ;
②過點F作直線交y軸正半軸于點G,使∠GFO=30°,若直線上的點P(m,n)是⊙O的關聯點,求m的取值范圍;
(2)若線段EF上的所有點都是某個圓的關聯點,求這個圓的半徑r的取值范圍。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OABC的兩邊分別在x軸、y軸上,D是對角線的交點,若反比例函數y=的圖象經過點D,且與矩形OABC的兩邊AB,BC分別交于點E,F.
(1)若D的坐標為(4,2)
①則OA的長是 ,AB的長是 ;
②請判斷EF是否與AC平行,井說明理由;
③在x軸上是否存在一點P.使PD+PE的值最小,若存在,請求出點P的坐標及此時PD+PE的長;若不存在.請說明理由.
(2)若點D的坐標為(m,n),且m>0,n>0,求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在直角坐標系中放入一個矩形紙片ABCO,將紙片翻折后,點B恰好落在軸上,記為,折痕為CE.直線CE的關系式是,與軸相交于點F,且AE=3.
(1)求OC長度;
(2)求點的坐標;
(3)求矩形ABCO的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com