【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.
(1)求證:△ADC≌△CEB.
(2)AD=5cm,DE=3cm,求BE的長度.
【答案】(1)見解析;(2)2cm.
【解析】
(1)結合條件利用直角三角形的性質(zhì)可得∠BCE=∠CAD,利用AAS和證得全等;
(2)由全等三角形的性質(zhì)可求得CD=BE,利用線段的和差可求得BE的長度.
(1)證明:∵BE⊥CE于E,AD⊥CE于D,
∴∠BEC=∠CDA=90°,
在Rt△BEC中,∠BCE+∠CBE=90°,
在Rt△BCA中,∠BCE+∠ACD=90°,
∴∠CBE=∠ACD,
在△BEC和△CDA中,
∴△BEC≌△CDA(AAS)
(2)由(1)知,△ADC≌△CEB,
則AD=CE=5cm,CD=BE.
∵CD=CE-DE,
∴BE=AD-DE=5-3=2(cm),
即BE的長度是2cm.
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的個數(shù)有( )
①垂線段最短;
②一對內(nèi)錯角的角平分線互相平行;
③平面內(nèi)的n條直線最多有個交點;
④若,則;
⑤平行于同一直線的兩條直線互相平行,垂直于同一直線的兩條直線也互相平行.
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y1=x2與直線y2=-x+3相交于A,B兩點.
(1)求這兩個交點的坐標;
(2)點O的坐標是原點,求△AOB的面積;
(3)直接寫出當y1<y2時,x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知平面內(nèi)有兩條直線AB、CD,且AB∥CD,P為一動點.
(1)當點P移動到AB、CD之間時,如圖(1),這時∠P與∠A、∠C有怎樣的關系?證明你的結論.
(2)當點P移動到如圖(2)的位置時,∠P與∠A、∠C又有怎樣的關系?請證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】同時拋擲A,B兩個均勻的小立方體(每個面上分別標有數(shù)字1,2,3,4,5,6),設兩立方體朝上的數(shù)字分別為x,y,并以此確定點P(x,y),那么點P落在直線y=-2x+9上的概率為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學校開展“書香校園”活動以來,受到同學們的廣泛關注,學校為了解全校學生課外閱讀的情況,隨機調(diào)查了部分學生在一周內(nèi)借閱圖書的次數(shù),并制成如圖不完整的統(tǒng)計表.學生借閱圖書的次數(shù)統(tǒng)計表
借閱圖書的次數(shù) | 0次 | 1次 | 2次 | 3次 | 4次及以上 |
人數(shù) | 7 | 13 | a | 10 | 3 |
請你根據(jù)統(tǒng)計圖表中的信息,解答下列問題:
______,______.
該調(diào)查統(tǒng)計數(shù)據(jù)的中位數(shù)是______,眾數(shù)是______.
請計算扇形統(tǒng)計圖中“3次”所對應扇形的圓心角的度數(shù);
若該校共有2000名學生,根據(jù)調(diào)查結果,估計該校學生在一周內(nèi)借閱圖書“4次及以上”的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖AD是△ABC的角平分線,DF⊥AB,垂足為F,如圖DE=DG,△ADG和△AED的面積分別為50和38,則△EDF的面積( 。
A.6B.12C.8D.3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,點P為AC邊上的一點,將線段AP繞點A順時針方向旋轉(zhuǎn)(點P對應點P′),當AP旋轉(zhuǎn)至AP′⊥AB時,點B、P、P′恰好在同一直線上,此時作P′E⊥AC于點E.
(1)求證:∠CBP=∠ABP;
(2)求證:AE=CP;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com