【題目】【回顧】
如圖1,△ABC中,∠B=30°,AB=3,BC=4,則△ABC的面積等于 .
【探究】
圖2是同學(xué)們熟悉的一副三角尺,一個(gè)含有30°的角,較短的直角邊長(zhǎng)為a;另一個(gè)含有45°的角,直角邊長(zhǎng)為b,小明用兩副這樣的三角尺拼成一個(gè)平行四邊形ABCD(如圖3),用了兩種不同的方法計(jì)算它的面積,從而推出sin75°=,小麗用兩副這樣的三角尺拼成了一個(gè)矩形EFGH(如圖4),也推出sin75°=,請(qǐng)你寫出小明或小麗推出sin75°=的具體說(shuō)理過(guò)程.
【應(yīng)用】
在四邊形ABCD中,AD∥BC,∠D=75°,BC=6,CD=5,AD=10(如圖5).
(1)點(diǎn)E在AD上,設(shè)t=BE+CE,求t2的最小值;
(2)點(diǎn)F在AB上,將△BCF沿CF翻折,點(diǎn)B落在AD上的點(diǎn)G處,點(diǎn)G是AD的中點(diǎn)嗎?說(shuō)明理由.
【答案】【回顧】3;【探究】答案見(jiàn)解析;【應(yīng)用】(1)86+25;(2)點(diǎn)G不是AD的中點(diǎn).
【解析】試題分析:回顧:如圖1中,作AH⊥BC.求出AH即可解決問(wèn)題;
探究:如圖2中,根據(jù)S四邊形ABCD=BCABsin75°=2S△ABE+2S△BFC+S矩形EFGH列出方程即可解決問(wèn)題;
應(yīng)用:(1)作C關(guān)于AD的對(duì)稱點(diǎn)H,CH交AD于J,連接BH,EH.因?yàn)?/span>EC=EH,推出EB+EC=EB+EH,在△EBH中,BE+EH≥BH,推出BE+EC的最小值為BH,求出BH即可解決問(wèn)題;
(2)結(jié)論:點(diǎn)G不是AD的中點(diǎn).理由反證法證明即可.
試題解析:解:由題意可知四邊形EFGH是矩形,AB=CD=2a,AH=DH=BF=CF=b,EF=GH=a﹣b,EH=FG=b﹣a,BC=b.
【回顧】如圖1中,作AH⊥BC.
在Rt△ABH中,∵∠B=30°,AB=3,∴AH=ABsin30°=,∴S△ABC=BCAH=×4×=3,故答案為:3.
探究:如圖3中,
由題意可知四邊形EFGH是矩形,AB=CD=2a,AH=DH=BF=CF=b,EF=GH=a﹣b,EH=FG=b﹣a,BC=b,∵S四邊形ABCD=BCABsin75°=2S△ABE+2S△BFC+S矩形EFGH
∴b2asin75°=2××a×a+2××b2+(a﹣b)(b﹣a),∴2absin75°=ab+ab,∴sin75°=.
如圖4中,
易知四邊形ABCD是平行四邊形,∠BAD=75°,∴S四邊形EFGH=2S△ABE+2S△ADF+S平行四邊形ABCD,∴(a+b)(a+b)═2××a×a+2××b2+b2asin75°,∴sin75°=.
應(yīng)用:(1)作C關(guān)于AD的對(duì)稱點(diǎn)H,CH交AD于J,連接BH,EH.
在Rt△DCJ中,JC=CDsin75°=,∴CH=2CJ=,在Rt△BHC中,BH2=BC2+CH2=36+=86+25,∵EC=EH,∴EB+EC=EB+EH,在△EBH中,BE+EH≥BH,∴BE+EC的最小值為BH,∴t=BE+CE,t2的最小值為BH2,即為86+25.
(2)結(jié)論:點(diǎn)G不是AD的中點(diǎn).
理由:作CJ⊥AD于J,DH⊥CG于H.
不妨設(shè)AG=GD=5,∵CD=5,∴DC=DG,∵DH⊥CG,∴GH=CH=3,在Rt△CDH中,DH= ==4,∵S△DGC=CGDH=DGCJ,∴CJ=,∴sin∠CDJ=,∵∠CDJ=75°,∴與sin75°=矛盾,∴假設(shè)不成立,∴點(diǎn)G不是AD的中點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果一個(gè)分式的分子或分母可以因式分解,且這個(gè)分式不可約分,那么我們稱這
個(gè)分式為“和諧分式”.
(1)下列分式:①;②;③;④. 其中是“和諧分式”是 (填寫序號(hào)即可);
(2)若為正整數(shù),且為“和諧分式”,請(qǐng)寫出的值;
(3)在化簡(jiǎn)時(shí),
小東和小強(qiáng)分別進(jìn)行了如下三步變形:
小東:
小強(qiáng):
顯然,小強(qiáng)利用了其中的和諧分式, 第三步所得結(jié)果比小東的結(jié)果簡(jiǎn)單,
原因是: ,
請(qǐng)你接著小強(qiáng)的方法完成化簡(jiǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)B、E分別在AC、DF上,AF分別交BD、CE于點(diǎn)M、N,∠A=∠F,∠1=∠2.
(1)求證:四邊形BCED是平行四邊形;
(2)已知DE=2,連接BN,若BN平分∠DBC,求CN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)A(1,1),B(3,2),將點(diǎn)A向左平移兩個(gè)單位,再向上平移4個(gè)單位得到點(diǎn)C.
(1)寫出點(diǎn)C坐標(biāo);
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的邊OA、OC分別在x軸、y軸上,點(diǎn)B坐標(biāo)為(4,t)(t>0),二次函數(shù)(b<0)的圖象經(jīng)過(guò)點(diǎn)B,頂點(diǎn)為點(diǎn)D.
(1)當(dāng)t=12時(shí),頂點(diǎn)D到x軸的距離等于 ;
(2)點(diǎn)E是二次函數(shù)(b<0)的圖象與x軸的一個(gè)公共點(diǎn)(點(diǎn)E與點(diǎn)O不重合),求OEEA的最大值及取得最大值時(shí)的二次函數(shù)表達(dá)式;
(3)矩形OABC的對(duì)角線OB、AC交于點(diǎn)F,直線l平行于x軸,交二次函數(shù)(b<0)的圖象于點(diǎn)M、N,連接DM、DN,當(dāng)△DMN≌△FOC時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊△A1C1C2的周長(zhǎng)為1,作C1D1⊥A1C2于D1,在C1C2的延長(zhǎng)線上取點(diǎn)C3,使D1C3=D1C1,連接D1C3,以C2C3為邊作等邊△A2C2C3;作C2D2⊥A2C3于D2,在C2C3的延長(zhǎng)線上取點(diǎn)C4,使D2C4=D2C2,連接D2C4,以C3C4為邊作等邊△A3C3C4;…且點(diǎn)A1,A2,A3,…都在直線C1C2同側(cè),如此下去,則△A1C1C2,△A2C2C3,△A3C3C4,…,△AnCnCn+1的周長(zhǎng)和為______.(n≥2,且n為整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,線段AB和射線BM交于點(diǎn)B.
(1)利用尺規(guī)完成以下作圖,并保留作圖痕跡(不寫作法)
①在射線BM上作一點(diǎn)C,使AC=AB;
②作∠ABM 的角平分線交AC于D點(diǎn);
③在射線CM上作一點(diǎn)E,使CE=CD,連接DE.
(2)在(1)所作的圖形中,猜想線段BD與DE的數(shù)量關(guān)系,并證明之.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】據(jù)報(bào)導(dǎo),我省農(nóng)作物秸桿的資源巨大,但合理利用量十分有限,2006年的利用率只有30%,大部分秸桿被直接焚燒了,假定我省每年產(chǎn)出的農(nóng)作物秸桿總量不變,且合理利用的增長(zhǎng)率相同,要使2008年的利用率提高到60%,求每年的增長(zhǎng)率。(取≈1.41)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com