【題目】如圖,在矩形ABCD中,AB=4,BC=,E為CD邊上一點(diǎn),將△BCE沿BE折疊,使得C落到矩形內(nèi)點(diǎn)F的位置,連接AF,若tan∠BAF=,則CE=_____.
【答案】
【解析】
已知tan∠BAF=,可作輔助線構(gòu)造直角三角形,設(shè)未知數(shù),利用勾股定理可求出FM、BM,進(jìn)而求出FN,再利用三角形相似和折疊的性質(zhì)求出EC.
過點(diǎn)F作MN∥AD,交AB、CD分別于點(diǎn)M、N,則MN⊥AB,MN⊥CD,
由折疊得:EC=EF,BC=BF=,∠C=∠BFE=90°,
∵tan∠BAF==,設(shè)FM=x,則AM=2x,BM=4﹣2x,
在Rt△BFM中,由勾股定理得:
x2+(4﹣2x)2=()2,
解得:x1=1,x2=>2舍去,
∴FM=1,AM=BM=2,
∴FN=﹣1,
易證△BMF∽△FNE,
∴,即:,
解得:EF==EC.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C是圓上一點(diǎn),點(diǎn)D是的中點(diǎn),延長AD至點(diǎn)E,使得AB=BE.
(1)求證:△ACF∽△EBF;
(2)若BE=10,tanE=,求CF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一筆直的海岸線上有A,B兩個(gè)觀測站,A在B的正東方向,有一艘小船停在點(diǎn)P處,從A測得小船在北偏西60°的方向,從B測得小船在北偏東45°的方向,BP=6km.
(1)求A、B兩觀測站之間的距離;
(2)小船從點(diǎn)P處沿射線AP的方向前行,求觀測站B與小船的最短距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)a使關(guān)于x的不等式組至少有3個(gè)整數(shù)解,且使關(guān)于y的分式方程=2有非負(fù)整數(shù)解,則滿足條件的所有整數(shù)a的和是( )
A. 14B. 15C. 23D. 24
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖拋物y=﹣與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.C,D兩點(diǎn)關(guān)于拋物線對(duì)稱軸對(duì)稱,連接BD交y軸于點(diǎn)E,拋物線對(duì)稱軸交x軸于點(diǎn)F.
(1)點(diǎn)P為線段BD上方拋物線上的一點(diǎn),連接PD,PE.點(diǎn)M是y軸上一點(diǎn),過點(diǎn)M作MN⊥y軸交拋物線對(duì)稱軸于點(diǎn)N.當(dāng)△PDE面積最大時(shí),求PM+MN+NF的最小值;
(2)如圖2,在(1)中PM+MN+NF取得最小值時(shí),將△PME繞點(diǎn)P順時(shí)針旋轉(zhuǎn)120°后得到△PM′E′,點(diǎn)G是MN的中點(diǎn),連接M′G交拋物線的對(duì)稱軸于點(diǎn)H,過點(diǎn)H作直線l∥PM,點(diǎn)R是直線l上一點(diǎn),在平面直角坐標(biāo)系中是否存在一點(diǎn)S,使以點(diǎn)M′,點(diǎn)G,點(diǎn)R,點(diǎn)S為頂點(diǎn)的四邊形是矩形?若存在,直接寫出點(diǎn)S的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,CB⊥AB,D為圓上一點(diǎn),且AD∥OC,連接CD,AC,BD,AC與BD交于點(diǎn)M.
(1)求證:CD為⊙O的切線;
(2)若CD=AD,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商品的進(jìn)價(jià)為每件30元,售價(jià)為每件40元,每周可賣出180件;如果每件商品的售價(jià)每上漲1元,則每周就會(huì)少賣出5件,但每件售價(jià)不能高于55元,設(shè)每件商品的售價(jià)上漲x元(x為整數(shù)),每周的銷售利潤為y元.
(1)求y與x的函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍;
(2)每件商品的售價(jià)為多少元時(shí),每周可獲得最大利潤?最大利潤是多少?
(3)每件商品的售價(jià)定為多少元時(shí),每周的利潤恰好是2145元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知P為等邊△ABC形內(nèi)一點(diǎn),且PA=3cm,PB=4 cm,PC=5 cm,則圖中△PBC的面積為________cm2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“扶貧攻堅(jiān)”活動(dòng)中,某單位計(jì)劃選購甲、乙兩種物品慰問貧困戶.已知甲物品的單價(jià)比乙物品的單價(jià)高10元,若用500元單獨(dú)購買甲物品與450元單獨(dú)購買乙物品的數(shù)量相同.
①請(qǐng)問甲、乙兩種物品的單價(jià)各為多少?
②如果該單位計(jì)劃購買甲、乙兩種物品共55件,總費(fèi)用不少于5000元且不超過5050元,通過計(jì)算得出共有幾種選購方案?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com