【題目】如圖,在△ABC中,以AB為直徑作圓交AC、BC于點(diǎn)D、E兩點(diǎn),AF切⊙O于點(diǎn)A,點(diǎn)D是AC中點(diǎn).
(1)求證:AB=BC;
(2)若,CF=,求⊙O的半徑.
【答案】(1)證明見(jiàn)解析;(2)半徑為.
【解析】
(1)連接BD,易證BD⊥AC,結(jié)合點(diǎn)D是AC中點(diǎn),即可得到結(jié)論;
(2)連接AE,設(shè)CE=,則AC=4k,CD=2k,由CAE~CBD,得,從而得BC=,BE=,由AEF~BEA,得,結(jié)合,得k=,進(jìn)而即可求解.
(1)連接BD,
∵AB是⊙O的直徑,
∴∠ADB=90°,即:BD⊥AC,
又∵點(diǎn)D是AC中點(diǎn),
∴BD是AC的中垂線,
∴AB=BC;
(2)連接AE,
∵,
∴設(shè)CE=,則AC=4k,
∵點(diǎn)D是AC中點(diǎn),
∴CD=AC=2k,
∵AB是⊙O的直徑,
∴∠AEC=∠BDC=90°,
又∵∠CAE=∠CBD,
∴CAE~CBD,
∴,即:,
∴BC=,BE=-=,
∵AF切⊙O于點(diǎn)A,
∴AB⊥AF,
∴∠FAE+∠BAE=∠EAB+∠ABE=90°,
∴∠FAE=∠ABE,
∵∠AEF=∠BEA=90°,
∴AEF~BEA,
∴,即:,
又∵, CF=,
∴,解得:k=,
∴,BE==,
∴,
∴⊙O的半徑為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在“陽(yáng)光體育”活動(dòng)時(shí)間,小英、小麗、小敏、小潔四位同學(xué)進(jìn)行一次羽毛球單打比賽,要從中選出兩位同學(xué)打第一場(chǎng)比賽.
(1)若已確定小英打第一場(chǎng),再?gòu)钠溆嗳煌瑢W(xué)中隨機(jī)選取一位,求恰好選中小麗同學(xué)的概率;
(2)用畫(huà)樹(shù)狀圖或列表的方法,求恰好選中小敏、小潔兩位同學(xué)進(jìn)行比賽的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一列快車(chē)從甲地勻速駛往乙地,一列慢車(chē)從乙地勻速駛往甲地.設(shè)先發(fā)車(chē)輛行駛的時(shí)間為xh,兩車(chē)之間的距離為ykm,圖中的折線表示y與x之間的函數(shù)關(guān)系,根據(jù)圖象解決以下問(wèn)題:
(1)慢車(chē)的速度為_____km/h,快車(chē)的速度為_____km/h;
(2)解釋圖中點(diǎn)C的實(shí)際意義并求出點(diǎn)C的坐標(biāo);
(3)求當(dāng)x為多少時(shí),兩車(chē)之間的距離為500km.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在下列14×7的網(wǎng)格中,橫、縱坐標(biāo)均為整點(diǎn)的數(shù)叫做格點(diǎn),例如A(-6,0)、B(-3,4)都是格點(diǎn).
(1)直接寫(xiě)出△ABO的形狀;
(2)要求在下圖中僅用無(wú)刻度的直尺作圖:將△ABO繞點(diǎn)O順時(shí)針旋轉(zhuǎn)得△DEO,且點(diǎn)B的對(duì)應(yīng)點(diǎn)E落在x軸正半軸上.操作如下:
第一步:在x正半軸上找一個(gè)格點(diǎn)E,使OE=OB;
第二步:找一個(gè)格點(diǎn)F,使∠EOF=∠AOB;
第三步:找一個(gè)格點(diǎn)M,作直線長(zhǎng)AM交直線OF于D,連DE,則△DEO即為所作出的圖形.
請(qǐng)你按步驟完成作圖,并直接寫(xiě)出直線AM的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)C、B分別在軸、軸上,△ABC是等腰直角三角形,∠BAC=90°,已知A(2,2)、P(1,0).M為BC的中點(diǎn),則PM的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方形ABCD的邊長(zhǎng)為3,E是邊BC上一點(diǎn),BE=1,將△ABE,△ADF分別沿折痕AE,AF向內(nèi)折疊,點(diǎn)B,D在點(diǎn)G處重合,過(guò)點(diǎn)E作EH⊥AE,交AF的延長(zhǎng)線于H,則線段FH的長(zhǎng)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)在試銷(xiāo)一種進(jìn)價(jià)為20元/件的商品時(shí),每天不斷調(diào)整該商品的售價(jià)以期獲利更多,經(jīng)過(guò)20天的試銷(xiāo)發(fā)現(xiàn),第一天銷(xiāo)售量為78件,以后每天銷(xiāo)售量總比前一天減少2件,且第1天至第10天,商品銷(xiāo)售單價(jià)p與天數(shù)x滿足:p=30+x;第11天至第20天,商品銷(xiāo)售單價(jià)p與天數(shù)x滿足:p=20+.
(1)寫(xiě)出銷(xiāo)售量y(件)與天數(shù)x(天)的函數(shù)關(guān)系式;
(2)求商場(chǎng)銷(xiāo)售該商品的20天里每天獲得的利潤(rùn)w(元)與x的函數(shù)關(guān)系式;
(3)該商品試制期間,第幾天銷(xiāo)售該商品獲得的利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】春天來(lái)了,我校計(jì)劃組織師生共人坐、兩種型號(hào)的大巴車(chē)外出春游,且型車(chē)每輛租金為元,型車(chē)每輛租金為元,為了保證安全,校方要求必須保證人人都有座位.學(xué)生南南發(fā)現(xiàn)若租輛型與輛型大巴車(chē)恰好能坐下人,若租輛型與輛型大巴車(chē)恰好能坐下人.
(1)請(qǐng)問(wèn)輛型與輛型大巴車(chē)各有幾座?
(2)現(xiàn)學(xué)校決定租兩種型號(hào)的大巴車(chē)共輛作為出行交通工具,但政教主任蔣老師發(fā)現(xiàn)租車(chē)總經(jīng)費(fèi)不能超過(guò)元.他想運(yùn)用函數(shù)的知識(shí)進(jìn)行分析,為學(xué)校尋找最節(jié)省的租車(chē)方案.現(xiàn)蔣老師設(shè)學(xué)校租了型大巴車(chē)輛,租車(chē)總費(fèi)用為元.請(qǐng)你幫蔣老師完成分析過(guò)程,確定共有幾種租車(chē)方案?哪種租車(chē)方案最省錢(qián)?并求出最低費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在矩形ABCD中,AB=6,BC=8,點(diǎn)E是邊CD上的點(diǎn),且CE=4,過(guò)點(diǎn)E作CD的垂線,并在垂線上截取EF=3,連接CF.將△CEF繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn),記旋轉(zhuǎn)角為a.
(1)問(wèn)題發(fā)現(xiàn)
當(dāng)a=0°時(shí),AF= ,BE= ,= ;
(2)拓展探究
試判斷:當(dāng)0°≤a°<360°時(shí),的大小有無(wú)變化?請(qǐng)僅就圖2的情況給出證明.
(3)問(wèn)題解決
當(dāng)△CEF旋轉(zhuǎn)至A,E,F三點(diǎn)共線時(shí),直接寫(xiě)出線段BE的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com