【題目】閱讀下列材料:

已知xy2,且x1,y0,試確定x+y的取值范圍

解:∵xy2,∴xy+2

又∵x1,∴y+21.∴y>﹣1

又∵y0,∴﹣1y0. …

同理得:1x2.  …

+得﹣1+1y+x0+2

x+y的取值范圍是0x+y2

請(qǐng)按照上述方法,完成下列問(wèn)題:

已知關(guān)于xy的方程組的解都為正數(shù).

1)求a的取值范圍;

2)已知ab3,且b1,求a+b的取值范圍.

【答案】(1) ;(2) .

【解析】

1)首先表示出x,y的值,進(jìn)而利用方程組的解都為正數(shù)進(jìn)而得出答案;

2)利用a-b=3,且b<1,分別得出a,b的取值范圍進(jìn)而得出答案.

解:(1

①×2+②得:3x=9a-6

解得:x=3a-2

x=3a-2代入②得:y=a+1,所以,方程組的解為:

∵方程組的解都為正數(shù)

解得:.

解得不等式的解集為: .

(2)a-b=3

a=b+3,

又∵.

b+3

b

又∵b1

同理可得:

③+④得:

a+b的取值范圍是: .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某園林專(zhuān)業(yè)戶計(jì)劃投資種植花卉及樹(shù)木,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),種植樹(shù)木的利潤(rùn)y1與投資量x成正比例關(guān)系,種植花卉的利潤(rùn)y2與投資量x的平方成正比例關(guān)系,并得到了表格中的數(shù)據(jù).

投資量x(萬(wàn)元)

2

種植樹(shù)木利潤(rùn)y1(萬(wàn)元)

4

種植花卉利潤(rùn)y2(萬(wàn)元)

2

(1)分別求出利潤(rùn)y1與y2關(guān)于投資量x的函數(shù)關(guān)系式;

(2)如果這位專(zhuān)業(yè)戶以8萬(wàn)元資金投入種植花卉和樹(shù)木,設(shè)他投入種植花卉金額m萬(wàn)元,種植花卉和樹(shù)木共獲利利潤(rùn)W萬(wàn)元,直接寫(xiě)出W關(guān)于m的函數(shù)關(guān)系式,并求他至少獲得多少利潤(rùn)?他能獲取的最大利潤(rùn)是多少?

(3)若該專(zhuān)業(yè)戶想獲利不低于22萬(wàn),在(2)的條件下,直接寫(xiě)出投資種植花卉的金額m的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲.乙兩同學(xué)騎自行車(chē)從A地沿同一條路到B已知乙比甲先出發(fā),他們離出發(fā)地的距離Skm)和騎行時(shí)間th)之間的函數(shù)關(guān)系如圖1所示給出下列說(shuō)法:①他們都騎行了20km;②乙在途中停留了0.5h;③甲.乙兩人同時(shí)到達(dá)目的地;④相遇后,甲的速度小于乙的速度

根據(jù)圖象信息以上說(shuō)法正確的有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC,A90°ABAC

1)如圖1,ABC的角平分線BD,CE交于點(diǎn)Q,請(qǐng)判斷“”是否正確________(填“是”或“否”);

2)點(diǎn)PABC所在平面內(nèi)的一點(diǎn),連接PA,PB,PB PA

①如圖2,點(diǎn)P在△ABC內(nèi),ABP30°PAB的大小;

②如圖3,點(diǎn)P在△ABC連接PC,設(shè)APCα,BPCβ,用等式表示αβ之間的數(shù)量關(guān)系,并證明你的結(jié)論

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校開(kāi)設(shè)武術(shù)、舞蹈、剪紙三項(xiàng)活動(dòng)課程,為了了解學(xué)生對(duì)這三項(xiàng)活動(dòng)課程的興趣情況,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查(每人從中只能選一頂),并將調(diào)查結(jié)果繪制成下面兩幅統(tǒng)計(jì)圖,請(qǐng)你結(jié)合圖中信息解答問(wèn)題.

1)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

2)本次抽樣調(diào)查的樣本容量是   ;

3)在扇形統(tǒng)計(jì)圖中,求女生喜歡剪紙活動(dòng)課程人數(shù)對(duì)應(yīng)的圓心角度數(shù);

4)已知該校有1200名學(xué)生,求全校學(xué)生中喜歡武術(shù)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】新合作超市最近進(jìn)了一批玩具,進(jìn)價(jià)每個(gè)15元,今天共賣(mài)山20個(gè),實(shí)際賣(mài)出的價(jià)格以每個(gè)18元為標(biāo)準(zhǔn),超過(guò)的記為正,不足的記為負(fù),記錄如下:

實(shí)際每個(gè)售出價(jià)格與標(biāo)準(zhǔn)的差值(單位:元)

+3

-1

+2

+1

個(gè)數(shù)

5

4

6

5

1)這個(gè)超市今天賣(mài)出玩具的平均價(jià)格是多少?

2)這個(gè)超市今天賣(mài)出的玩具賺了多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】李大爺一年前買(mǎi)入了A、B兩種兔子共46只.目前,他所養(yǎng)的這兩種兔子數(shù)量相同,且A種兔子的數(shù)量比買(mǎi)入時(shí)減少了3只,B種兔子的數(shù)量比買(mǎi)入時(shí)減少a只.

(1)則一年前李大爺買(mǎi)入A種兔子________只,目前A、B兩種兔子共________只(用含a的代數(shù)式表示);

(2)若一年前買(mǎi)入的A種兔子數(shù)量多于B種兔子數(shù)量,則目前A、B兩種兔子共有多少只?

(3)李大爺目前準(zhǔn)備賣(mài)出30只兔子,已知賣(mài)A種兔子可獲利15/只,賣(mài)B種兔子可獲利6/只.如果賣(mài)出的A種兔子少于15只,且總共獲利不低于280元,那么他有哪幾種賣(mài)兔方案?哪種方案獲利最大?請(qǐng)求出最大獲利.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,下列條件不能判定這個(gè)四邊形是平行四邊形的是

A.ABDC,ADBC  B.AB=DC,AD=BC

C.AO=CO,BO=DO   D.ABDC,AD=BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】湘潭市繼2017年成功創(chuàng)建全國(guó)文明城市之后,又準(zhǔn)備爭(zhēng)創(chuàng)全國(guó)衛(wèi)生城市.某小區(qū)積極響應(yīng),決定在小區(qū)內(nèi)安裝垃圾分類(lèi)的溫馨提示牌和垃圾箱,若購(gòu)買(mǎi)2個(gè)溫馨提示牌和3個(gè)垃圾箱共需550元,且垃圾箱的單價(jià)是溫馨提示牌單價(jià)的3倍.

(1)求溫馨提示牌和垃圾箱的單價(jià)各是多少元?

(2)該小區(qū)至少需要安放48個(gè)垃圾箱,如果購(gòu)買(mǎi)溫馨提示牌和垃圾箱共100個(gè),且費(fèi)用不超過(guò)10000元,請(qǐng)你列舉出所有購(gòu)買(mǎi)方案,并指出哪種方案所需資金最少?最少是多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案