實(shí)驗(yàn)與探究:
三角點(diǎn)陣前n行的點(diǎn)數(shù)計(jì)算
如圖是一個(gè)三角點(diǎn)陣,從上向下數(shù)有無數(shù)多行,其中第一行有1個(gè)點(diǎn),第二行有2個(gè)點(diǎn)…第n行有n個(gè)點(diǎn)…
容易發(fā)現(xiàn),10是三角點(diǎn)陣中前4行的點(diǎn)數(shù)的和,你能發(fā)現(xiàn)300是前多少行的點(diǎn)數(shù)的和嗎?
如果要用試驗(yàn)的方法,由上而下地逐行的相加其點(diǎn)數(shù),雖然你能發(fā)現(xiàn)1+2+3+4+…+23+24=300.得知300是前24行的點(diǎn)數(shù)的和,但是這樣尋找答案需我們先探求三角點(diǎn)陣中前n行的點(diǎn)數(shù)的和與n的數(shù)量關(guān)系
前n行的點(diǎn)數(shù)的和是1+2+3+…+(n-2)+(n-1)+n,可以發(fā)現(xiàn).
2×[1+2+3+…+(n-2)+(n-1)+n]
=[1+2+3+…+(n-2)+(n-1)+n]+[n+(n-1)+(n-2)+…3+2+1]
把兩個(gè)中括號(hào)中的第一項(xiàng)相加,第二項(xiàng)相加…第n項(xiàng)相加,上式等號(hào)的后邊變形為這n個(gè)小括號(hào)都等于n+1,整個(gè)式子等于n(n+1),于是得到
1+2+3+…+(n-2)+(n-1)+n=
n(n+1)
這就是說,三角點(diǎn)陣中前n項(xiàng)的點(diǎn)數(shù)的和是
n(n+1)
下列用一元二次方程解決上述問題
設(shè)三角點(diǎn)陣中前n行的點(diǎn)數(shù)的和為300,則有
n(n+1)=300
整理這個(gè)方程,得:n
2+n-600=0
解方程得:n
1=24,n
2=-25
根據(jù)問題中未知數(shù)的意義確定n=24,即三角點(diǎn)陣中前24行的點(diǎn)數(shù)的和是300.
請(qǐng)你根據(jù)上述材料回答下列問題:
(1)三角點(diǎn)陣中前n行的點(diǎn)數(shù)的和能是600嗎?如果能,求出n;如果不能,試用一元二次方程說明道理.
(2)如果把圖中的三角點(diǎn)陣中各行的點(diǎn)數(shù)依次換成2、4、6、…、2n、…,你能探究出前n行的點(diǎn)數(shù)的和滿足什么規(guī)律嗎?這個(gè)三角點(diǎn)陣中前n行的點(diǎn)數(shù)的和能是600嗎?如果能,求出n;如果不能,試用一元二次方程說明道理.