【題目】在平面直角坐標(biāo)系xOy,直線y=x﹣1與y軸交于點(diǎn)A,與雙曲線y= 交于點(diǎn)B(m,2)
(1)求點(diǎn)B的坐標(biāo)及k的值;
(2)將直線AB平移,使它與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,若△ABC的面積為6,求直線CD的表達(dá)式.

【答案】
(1)解:把x=0代入y=x﹣1中得y=﹣1,

即A點(diǎn)坐標(biāo)為(0,﹣1)

B(m,2)在直線y=x﹣1上,

∴m=3,

B(3,2)在雙曲線y= 上,

∴2= ,

解得k=6


(2)解:設(shè)直線CD為y=x+b,

∵AB∥CD,

∴S△ABC=S△ABD= AD|xB|=6,

AD=4=|b+1|,xB=3,

|b+1|3=6 得b+1=4 或b+1=﹣4,

∴b=3 或b=﹣5,

∴平移后的直線表達(dá)式為y=x+3或y=x﹣5


【解析】(1)求出A的坐標(biāo),把B的坐標(biāo)代入直線解析式得出M=3,得出B的坐標(biāo),代入雙曲線即可得出k的值;(2)由三角形的面積求出b的值即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近年來,手機(jī)微信紅包迅速流行起來.去年春節(jié),小米的爺爺也嘗試用微信發(fā)紅包,他分別將10元、30元、60元的三個(gè)紅包發(fā)到只有爺爺、爸爸、媽媽和小米的微信群里,他們每人只能搶一個(gè)紅包,且搶到任何一個(gè)紅包的機(jī)會均等(爺爺只發(fā)不搶,紅包里錢的多少與搶紅包的先后順序無關(guān)).
(1)求小米搶到60元紅包的概率;
(2)如果小米的奶奶也加入“搶紅包”的微信群,他們四個(gè)人中將有一個(gè)人搶不到紅包,那么這種情況下,求小米和媽媽兩個(gè)人搶到紅包的錢數(shù)之和不少于70元的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=3,BC=5,點(diǎn)P是BC邊上的一個(gè)動點(diǎn)(點(diǎn)P不與點(diǎn)B、C重合),現(xiàn)將△PCD沿直線PD折疊,使點(diǎn)C落到點(diǎn)C′處;作∠BPC′的角平分線交AB于點(diǎn)E.設(shè)BP=x,BE=y,則下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請僅用無刻度的直尺在下列圖1和圖2中按要求畫菱形.
(1)圖1是矩形ABCD,E,F(xiàn)分別是AB和AD的中點(diǎn),以EF為邊畫一個(gè)菱形;
(2)圖2是正方形ABCD,E是對角線BD上任意一點(diǎn)(BE>DE),以AE為邊畫一個(gè)菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,填空:

(1)若∠4=∠3,則_________,理由是______;

(2)若∠2=∠E,則_______,理由是____;

(3)若∠A=∠ABE=180°,則_______,理由是____;

(4)若∠2=∠____,則DA∥EB,理由是____;

(5)若∠DBC+∠_____=180°,則DB∥EC,理由是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在7×7網(wǎng)格中,每個(gè)小正方形的邊長都為1.

(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系后,若點(diǎn)A(3,4)、C(4,2),則點(diǎn)B的坐標(biāo)為      

(2)圖中格點(diǎn)△ABC的面積為      ;

(3)判斷格點(diǎn)△ABC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(0,b),點(diǎn)B(a,0),點(diǎn)D(2,0),其中a、b滿足, DE⊥x軸,且∠BED=∠ABO,直線AEx軸于點(diǎn)C.

(1)A、B、E三點(diǎn)的坐標(biāo);

(2) 若以AB為一邊在第二象限內(nèi)構(gòu)造等腰直角三角形△ABF,請直接寫出點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ACB和ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB邊上一點(diǎn),

(1)求證:△ACE≌△BCD;

(2)若AE=3,AD=2,求DE的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A(﹣1,0),C(1,4),點(diǎn)B在x軸上,且AB=3.
(1)求點(diǎn)B的坐標(biāo);
(2)求△ABC的面積;
(3)在y軸上是否存在點(diǎn)P,使以A、B、P三點(diǎn)為頂點(diǎn)的三角形的面積為10?若存在,請直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案