【題目】如圖,在以O為原點的直角坐標系中,矩形OABC的兩邊OC、OA分別在x軸、y軸的正半軸上,反比例函數(shù)y=(x>0)的圖象與AB相交于點D.與BC相交于點E,且BD=3,AD=6,△ODE的面積為15,若動點P在x軸上,則PD+PE的最小值是_____.
【答案】.
【解析】
根據(jù)所給的三角形面積等于長方形面積減去三個直角三角形的面積,求得B和E的坐標,然后E點關(guān)于x的對稱得E′,則E′(9,﹣4),連接DE′,交x軸于P,此時,PD+PE=PD+PE′=DE′最小,利用勾股定理即可求得E點關(guān)于x的對稱得E′,則E′(9,﹣4),連接DE′,交x軸于P,此時,PD+PE=PD+PE′=DE′最。
解:∵四邊形OCBA是矩形,
∴AB=OC,OA=BC,
∵BD=3,AD=6,
∴AB=9,
設(shè)B點的坐標為(9,b),
∴D(6,b),
∵D、E在反比例函數(shù)的圖象上,
∴6b=k,
∴E(9,b),
∵S△ODE=S矩形OCBA﹣S△AOD﹣S△OCE﹣S△BDE=9b﹣k﹣k﹣3(b﹣b)=15,
∴9b﹣6b﹣b=15,
解得:b=6,
∴D(6,6),E(9,4),
作E點關(guān)于x的對稱得E′,則E′(9,﹣4),連接DE′,交x軸于P,此時,PD+PE=PD+PE′=DE′最小,
∵AB=9,BE′=6+4=10,
∴DE′==,
故答案為.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,△ABC的三個頂點坐標分別為A(2,1),B(1,4),C(3,2).請解答下列問題:
(1)畫出△ABC關(guān)于y軸對稱的圖形△A1B1C1,并直接寫出C1點的坐標;
(2)以原點O為位似中心,位似比為1:2,在y軸的右側(cè),畫出△ABC放大后的圖形△A2B2C2,并直接寫出C2點的坐標;
(3)如果點D(a,b)在線段BC上,請直接寫出經(jīng)過(2)的變化后對應點D2的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等邊△ABC中,點D、E分別在邊AB、BC上,AD=BE,CD與AE交于F.
(1)求∠AFD的度數(shù);
(2)若BE=m,CE=n.
①求的值;(用含有m和n的式子表示)
②若=,直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,要測量一垂直于水平面的建筑物AB的高度,小明從建筑物底端B出發(fā),沿水平方向向右走30米到達點C,又經(jīng)過一段坡角為30°,長為20米的斜坡CD,然后再沿水平方向向右走了50米到達點E(A,B,C,D,E均在同一平面內(nèi)).在E處測得建筑物頂端A的仰角為24°,求建筑物AB的高度.(結(jié)果保留根號,參考數(shù)據(jù):sin24°≈,cos24°≈,tan24°=)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將兩個等腰Rt△ADE、Rt△ABC如圖放置在一起,其中∠DAE=∠ABC=90°.點E在AB上,AC與DE交于點H,連接BH、CE,且∠BCE=15°,下列結(jié)論:①AC垂直平分DE;②△CDE為等邊三角形;③tan∠BCD=;④;正確的個數(shù)是( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知菱形在平面直角坐標系的位置如圖所示,頂點在軸的正半軸上,,,點是對角線上的一個動點,點的坐標為,則最小值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】黃石市在創(chuàng)建國家級文明衛(wèi)生城市中,綠化檔次不斷提升.某校計劃購進A,B兩種樹木共100棵進行校園綠化升級,經(jīng)市場調(diào)查:購買A種樹木2棵,B種樹木5棵,共需600元;購買A種樹木3棵,B種樹木1棵,共需380元.
(1)求A種,B種樹木每棵各多少元?
(2)因布局需要,購買A種樹木的數(shù)量不少于B種樹木數(shù)量的3倍.學校與中標公司簽訂的合同中規(guī)定:在市場價格不變的情況下(不考慮其他因素),實際付款總金額按市場價九折優(yōu)惠,請設(shè)計一種購買樹木的方案,使實際所花費用最省,并求出最省的費用.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),當x≥2時,y隨x的增大而增大,且-2≤x≤1時,y的最大值為9,則a的值為
A. 1或 B. -或 C. D. 1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,已知拋物線y=-x2+bx+c與x軸交于點A(-1,0)、B(3,0),與y軸交于點C.
(1)求拋物線的解析式;
(2)點D的坐標為(1,0),點P為第一象限內(nèi)拋物線上的一點,求四邊形BDCP面積的最大值;
(3)如圖②,動點M從點O出發(fā),以每秒2個單位長度的速度向點B運動,到達點B時停止運動,且不與點O、B重合.設(shè)運動時間為t秒,過點M作x軸的垂線交拋物線于點N,交線段BC于點Q,連接OQ,是否存在t值,使得△BOQ為等腰三角形?若存在,請求出t的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com