【題目】如圖,△ABC中,D是BC邊上一點(diǎn),E是AD的中點(diǎn),過點(diǎn)A作BC的平行線交CE的延長(zhǎng)線于點(diǎn)F,且AF=BD,連接BF.
(1)求證:△AEF≌△DEC;
(2)若AB=AC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論.
【答案】(1)詳見解析;(2):若AB=AC,則四邊形AFBD是矩形,理由詳見解析.
【解析】
(1)根據(jù)兩直線平行,內(nèi)錯(cuò)角相等求出∠AFE=∠DCE,∠FAE=∠CDE,然后利用“角角邊”證明△AEF和△DEC全等;
(2)由(1)知AF平行等于BD,易證四邊形AFBD是平行四邊形,而AB=AC,AD是中線,利用等腰三角形三線合一定理,可證AD⊥BC,即∠ADB=90°,那么可證四邊形AFBD是矩形.
(1)證明:∵AF∥BC,
∴∠AFE=∠DCE,∠FAE=∠CDE,
∵點(diǎn)E為AD的中點(diǎn),
∴AE=DE,
在△AEF和△DEC中,
∴△AEF≌△DEC(AAS);
(2)解:若AB=AC,則四邊形AFBD是矩形.理由如下:
∵AF∥BD,AF=BD,
∴四邊形AFBD是平行四邊形,
∵△AEF≌△DEC,
∴AF=CD,
∵AF=BD,
∴CD=BD;
∵AB=AC,BD=CD,
∴∠ADB=90°,
∴平行四邊形AFBD是矩形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△MNQ中,MN=11,NQ=,,矩形ABCD,BC=4,CD=3,點(diǎn)A與M重合,AD與MN重合.矩形ABCD沿著MQ方向平移,且平移速度為每秒5個(gè)單位,當(dāng)點(diǎn)A與Q重合時(shí)停止運(yùn)動(dòng).
(1)MQ的長(zhǎng)度是 ;
(2)運(yùn)動(dòng) 秒,BC與MN重合;
(3)設(shè)矩形ABCD與△MNQ重疊部分的面積為S,運(yùn)動(dòng)時(shí)間為t,求出S與t之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCD為菱形,且點(diǎn)D(﹣4,0)在x軸上,點(diǎn)B和點(diǎn)C(0,3)在y軸上,反比例函數(shù)y=(k≠0)過點(diǎn)A,點(diǎn)E(﹣2,m)、點(diǎn)F分別是反比例函數(shù)圖象上的點(diǎn),其中點(diǎn)F在第一象限,連結(jié)OE、OF,以線段OE、OF為鄰邊作平行四邊形OEGF.
(1)寫出反比例函數(shù)的解析式;
(2)當(dāng)點(diǎn)A、O、F在同一直線上時(shí),求出點(diǎn)G的坐標(biāo);
(3)四邊形OEGF周長(zhǎng)是否有最小值?若存在,求出這個(gè)最值,并確定此時(shí)點(diǎn)F的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形 中,、 的平分線 分別與線段 交于點(diǎn) , 與 交于點(diǎn) .
(1) 求證:,;
(2) 若 ,,,求 和 的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y1=kx+b與y2=x+a的圖象如圖,則下列結(jié)論:①k<0;②a>0;③關(guān)于x的方程kx﹣x=a﹣b的解是x=3;④當(dāng)x<3時(shí),y1<y2中.則正確的序號(hào)有________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知 Rt △ ACB 中, AC =3, BC =4,過直角頂點(diǎn) C 作 CA 1 ⊥ AB ,垂足為 A 1 ,再過 A 1 作 A 1 C 1 ⊥ BC ,垂足為 C 1 ,…...,這樣一直作下去得到了一組線段 CA 1 , A 1 C 1 , C 1 A 2 ,…,則第10條線段 A 5 C 5 =________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形ABCD中,分別以AD、BC為邊向內(nèi)作等邊△ADE和等邊△BCF,連接BE、DF.求證:四邊形BEDF是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰直角三角形OAB的三個(gè)定點(diǎn)分別為、、,過A作y軸的垂線.點(diǎn)C在x軸上以每秒的速度從原點(diǎn)出發(fā)向右運(yùn)動(dòng),點(diǎn)D在上以每秒的速度同時(shí)從點(diǎn)A出發(fā)向右運(yùn)動(dòng),當(dāng)四邊形ABCD為平行四邊形時(shí)C、D同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為.當(dāng)C、D停止運(yùn)動(dòng)時(shí),將△OAB沿y軸向右翻折得到△,與CD相交于點(diǎn)E,P為x軸上另一動(dòng)點(diǎn).
(1)求直線AB的解析式,并求出t的值.
(2)當(dāng)PE+PD取得最小值時(shí),求的值.
(3)設(shè)P的運(yùn)動(dòng)速度為1,若P從B點(diǎn)出發(fā)向右運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為,請(qǐng)用含的代數(shù)式表示△PAE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在四邊形ABCD中,AB=3CD,AB∥CD,CE∥DA,DF∥CB.
(1)求證:四邊形CDEF是平行四邊形;
(2)填空:
①當(dāng)四邊形ABCD滿足條件 時(shí)(僅需一個(gè)條件),四邊形CDEF是矩形;
②當(dāng)四邊形ABCD滿足條件 時(shí)(僅需一個(gè)條件),四邊形CDEF是菱形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com