【題目】已知AM∥CN,點(diǎn)B為平面內(nèi)一點(diǎn),AB⊥BC于B.
(1)如圖1,直接寫出∠A和∠C之間的數(shù)量關(guān)系___;
(2)如圖2,過(guò)點(diǎn)B作BD⊥AM于點(diǎn)D,求證:∠ABD=∠C;
(3)如圖3,在(2)問(wèn)的條件下,點(diǎn)E. F在DM上,連接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度數(shù).
【答案】(1)∠A+∠C=90°;(2)見(jiàn)解析;(3)105°.
【解析】
(1)根據(jù)平行線的性質(zhì)以及直角三角形的性質(zhì)進(jìn)行解答即可;
(2)先過(guò)點(diǎn)B作BG∥DM,根據(jù)同角的余角相等,得出∠ABD=∠CBG,再根據(jù)平行線的性質(zhì),得出∠C=∠CBG,即可得到∠ABD=∠C;
(3)先過(guò)點(diǎn)B作BG∥DM,根據(jù)角平分線的定義,得出∠ABF=∠GBF,再設(shè)∠DBE=α,∠ABF=β,根據(jù)∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根據(jù)AB⊥BC,可得β+β+2α=90°,最后解方程組即可得到∠ABE=15°,進(jìn)而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.
(1)如圖1,∵AM∥CN,
∴∠C=∠AOB,
∵AB⊥BC,
∴∠A+∠AOB=90°,
∴∠A+∠C=90°,
故答案為∠A+∠C=90°;
(2)如圖2,過(guò)點(diǎn)B作BG∥DM,
∵BD⊥AM,
∴DB⊥BG,即∠ABD+∠ABG=90°,
又∵AB⊥BC,
∴∠CBG+∠ABG=90°,
∴∠ABD=∠CBG,
∵AM∥CN∥BG,
∴∠C=∠CBG,
∴∠ABD=∠C;
(3)如圖3,過(guò)點(diǎn)B作BG∥DM,
∵BF平分∠DBC,BE平分∠ABD,
∴∠DBF=∠CBF,∠DBE=∠ABE,
由(2)可得∠ABD=∠CBG,
∴∠ABF=∠GBF,
設(shè)∠DBE=α,∠ABF=β,
則∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α,
∴∠AFC=3α+β,
∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,
∴∠FCB=∠AFC=3α+β,
在△BCF中,由∠CBF+∠BFC+∠BCF=180°,
可得 (2α+β)+3α+(3α+β)=180°,①
由AB⊥BC,可得
β+β+2α=90°,②
由①②聯(lián)立方程組,解得α=15°,
∴∠ABE=15°,
∴∠EBC=∠ABE+∠ABC=15°+90°=105°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“五一”期間,某商場(chǎng)推出“購(gòu)物滿額即可抽獎(jiǎng)”活動(dòng).商場(chǎng)在抽獎(jiǎng)箱中裝有1個(gè)紅球、2個(gè)黃球、3個(gè)白球、8個(gè)黑球,每個(gè)球除顏色外都相同,紅球、黃球、白球分別代表一、二、三等獎(jiǎng),黑球代表謝謝參與.獲得抽獎(jiǎng)機(jī)會(huì)的顧客每次從箱子中摸出一個(gè)球,按相應(yīng)顏色對(duì)應(yīng)等級(jí)兌換獎(jiǎng)品,每次所摸得球再放回抽獎(jiǎng)箱,搖勻后由下一位顧客抽獎(jiǎng).已知小明獲得1次抽獎(jiǎng)機(jī)會(huì).
(1)小明是否一定能中獎(jiǎng)___________;(填是、否)
(2)求出小明抽到一等獎(jiǎng)的概率;
(3)在這個(gè)活動(dòng)中,中獎(jiǎng)和沒(méi)中獎(jiǎng)的機(jī)會(huì)相等嗎?為什么?如果不相等,可以如何改變球的個(gè)數(shù),使中獎(jiǎng)和沒(méi)中獎(jiǎng)的機(jī)會(huì)相等?(只寫一種即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AB=5cm,BC=4cm,若點(diǎn)P從點(diǎn)A出發(fā),以每秒2cm的速度沿折線運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒。
(1)AC=______cm;
(2)若點(diǎn)P恰好在∠ABC的角平分線上,求此時(shí)的值;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了從甲、乙兩人中選拔一人參加射擊比賽,現(xiàn)對(duì)他們的射擊成績(jī)進(jìn)行了測(cè)試,5次打靶命中的環(huán)數(shù)如下:
甲:8,7,9,8,8; 乙:9,6,10,8,7;
(1)將下表填寫完整:
平均數(shù) | 中位數(shù) | 方差 | |
甲 | 8 | ||
乙 | 8 | 2 |
(2)根據(jù)以上信息,若你是教練,你會(huì)選擇誰(shuí)參加射擊比賽,理由是什么?
(3)若乙再射擊一次,命中8環(huán),則乙這六次射擊成績(jī)的方差會(huì) .(填“變大”或“變小”或“不變”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知⊙的半徑為9cm,射線經(jīng)過(guò)點(diǎn),OP=15 cm,射線與⊙相切于點(diǎn).動(dòng)點(diǎn)自P點(diǎn)以cm/s的速度沿射線方向運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)也自P點(diǎn)以2cm/s的速度沿射線方向運(yùn)動(dòng),則它們從點(diǎn)出發(fā) s后所在直線與⊙相切.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了更好地開(kāi)展“陽(yáng)光體育一小時(shí)”活動(dòng),對(duì)本校學(xué)生進(jìn)行了“寫出你最喜歡的體育活動(dòng)項(xiàng)目(只寫一項(xiàng))”的隨機(jī)抽樣調(diào)查,下面是根據(jù)得到的相關(guān)數(shù)據(jù)繪制的統(tǒng)計(jì)圖的一部分.
抽樣調(diào)查學(xué)生最喜歡的運(yùn)動(dòng)項(xiàng)目的人數(shù)統(tǒng)計(jì)圖 各運(yùn)動(dòng)項(xiàng)目的喜歡人數(shù)占抽樣總?cè)藬?shù)百分比統(tǒng)計(jì)圖
請(qǐng)根據(jù)以上信息解答下列問(wèn)題:
(1)該校對(duì)________名學(xué)生進(jìn)行了抽樣調(diào)查;
(2)請(qǐng)將圖1和圖2補(bǔ)充完整;
(3)圖2中跳繩所在的扇形對(duì)應(yīng)的圓心角的度數(shù)是________;
(4)若該校共有2400名同學(xué),請(qǐng)利用樣本數(shù)據(jù)估計(jì)全校學(xué)生中最喜歡跳繩運(yùn)動(dòng)的人數(shù)約為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,AD是弦,∠A=22.5°,延長(zhǎng)AB到點(diǎn)C,使得∠ACD=45°.
(1)求證:CD是⊙O的切線.
(2)若AB=2,求OC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們定義:如圖,在△中,把繞點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)得到,把繞點(diǎn)按逆時(shí)針?lè)较蛐D(zhuǎn)得到,連接,當(dāng)時(shí),我們稱△是△的“旋補(bǔ)三角形”,△邊上的中線叫做的“旋補(bǔ)中線”,點(diǎn)叫做“旋補(bǔ)中心”.
⑴ 特例感知:在如圖、如圖中,是的“旋補(bǔ)三角形”,是的“旋補(bǔ)中線”.
① 如圖,當(dāng)為等邊三角形時(shí),與的數(shù)量關(guān)系為= ;
② 如圖,當(dāng),時(shí),則長(zhǎng)為 .
⑵ 精確作圖:如圖,已知在四邊形內(nèi)部存在點(diǎn),使得是的“旋補(bǔ)三角形”(點(diǎn)D的對(duì)應(yīng)點(diǎn)為點(diǎn)A,點(diǎn)C的對(duì)應(yīng)點(diǎn)為點(diǎn)B),請(qǐng)用直尺和圓規(guī)作出點(diǎn)(要求:保留作圖痕跡,不寫作法和證明)
⑶ 猜想論證:在如圖中,當(dāng)△為任意三角形時(shí),猜想與的數(shù)量關(guān)系,并給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)的圖像經(jīng)過(guò)點(diǎn).
()求該二次函數(shù)的關(guān)系式.
()證明:無(wú)論取何值,函數(shù)值總不等于.
()將該拋物線先向___________(填“左”或“右”)平移___________個(gè)單位,再向___________(填“上”或“下”)平移___________個(gè)單位,使得該拋物線的頂點(diǎn)為原點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com