【題目】某校為了更好地開展陽光體育一小時活動,對本校學生進行了寫出你最喜歡的體育活動項目(只寫一項)的隨機抽樣調查,下面是根據得到的相關數(shù)據繪制的統(tǒng)計圖的一部分.

抽樣調查學生最喜歡的運動項目的人數(shù)統(tǒng)計圖 各運動項目的喜歡人數(shù)占抽樣總人數(shù)百分比統(tǒng)計圖

請根據以上信息解答下列問題:

1)該校對________名學生進行了抽樣調查;

2)請將圖1和圖2補充完整;

3)圖2中跳繩所在的扇形對應的圓心角的度數(shù)是________;

4)若該校共有2400名同學,請利用樣本數(shù)據估計全校學生中最喜歡跳繩運動的人數(shù)約為多少?

【答案】l200;(2)見解析;(3144o;(4

【解析】

1)由最喜歡跳繩運動的人數(shù)及其所占百分比可得總人數(shù);
2)根據各組人數(shù)之和等于總人數(shù)求得最喜歡投籃運動的人數(shù),再除以總人數(shù)可得其對應百分比,從而補全圖1和圖2
3)用360°乘以最喜歡跳繩運動的人數(shù)所占百分比可得跳繩所在的扇形圓心角的度數(shù);
4)總人數(shù)乘以樣本中最喜歡跳繩運動的人數(shù)所占百分比即可得.

解:(1)被調查的學生總人數(shù)為80÷40%=200,
故答案為:200;
2)最喜歡投籃運動的人數(shù)為200-40+80+20=60,
最喜歡投籃運動的人數(shù)所占百分比為×100%=30%,
補全圖形如下:

3)圖2中跳繩所在的扇形對應的圓心角的度數(shù)是為360°×40%=144°
故答案為144°;
42400×40%=960(人).
答:估計全校學生中最喜歡跳繩運動的人數(shù)約為960人.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】(2016四川省攀枝花市)某市為了鼓勵居民節(jié)約用水,決定實行兩級收費制度.若每月用水量不超過14噸(含14噸),則每噸按政府補貼優(yōu)惠價m元收費;若每月用水量超過14噸,則超過部分每噸按市場價n元收費.小明家3月份用水20噸,交水費49元;4月份用水18噸,交水費42元.

(1)求每噸水的政府補貼優(yōu)惠價和市場價分別是多少?

(2)設每月用水量為x噸,應交水費為y元,請寫出yx之間的函數(shù)關系式;

(3)小明家5月份用水26噸,則他家應交水費多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】填寫推理理由:

已知:如圖,D,F(xiàn),E分別是BC,AC,AB上的點,DFAB,DEAC,試說明EDF=A.

解:DFAB ( ),

∴∠A+AFD=180° ( ).

DEAC ( ),

∴∠AFD+EDF=180° ( ).

∴∠A=EDF ( ).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們定義:如圖,在中,把繞點按順時針方向旋轉得到,把繞點按逆時針方向旋轉得到,連接,當時,我們稱旋補三角形上的中線叫做旋補中線,點叫做旋補中心

特例感知:在如圖、如圖中,旋補三角形,旋補中線”.

如圖,當為等邊三角形時,的數(shù)量關系為

如圖,當時,則長為 .

精確作圖:如圖,已知在四邊形內部存在點,使得旋補三角形(點D的對應點為點A,點C的對應點為點B),請用直尺和圓規(guī)作出點(要求:保留作圖痕跡,不寫作法和證明)

猜想論證:在如圖中,當為任意三角形時,猜想的數(shù)量關系,并給予證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知AMCN,點B為平面內一點,ABBCB.

(1)如圖1,直接寫出∠A和∠C之間的數(shù)量關系___;

(2)如圖2,過點BBDAM于點D,求證:∠ABD=C;

(3)如圖3,(2)問的條件下,E. FDM,連接BE、BFCF,BF平分∠DBC,BE平分∠ABD,若∠FCB+NCF=180°,∠BFC=3DBE,求∠EBC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于平面直角坐標系xOy中的點,若點的坐標為(其中k為常數(shù),且),則稱點為點Pk屬派生點”.

例如:“4屬派生點,即.

1)點“2屬派生點的坐標為________;

2)若點P“3屬派生點的坐標為,求點P的坐標;

3)若點Py軸的正半軸上,點P“k屬派生點點,且點y軸的距離不小于線段OP長度的5倍,則k的取值范圍是________________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在⊙O中,半徑OAOB,過OA的中點CFDOB交⊙ODF兩點,且CD,以O為圓心,OC為半徑作,交OBE點.

1)求⊙O的半徑OA的長;

2)計算陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在菱形ABCD中,∠B=∠EAF60°,∠BAE20°,則∠AEF的大小是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,二次函數(shù)的圖像與軸交于兩點,與軸交于點,點是拋物線頂點,點是直線下方的拋物線上一動點.

)這個二次函數(shù)的表達式為____________.

)設直線的解析式為,則不等式的解集為___________.

)連結,并把沿翻折,得到四邊形,那么是否存在點,使四邊形為菱形?若存在,請求出此時點的坐標;若不存在,請說明理由.

)當四邊形的面積最大時,求出此時點的坐標和四邊形的最大面積.

)若把條件是直線下方的拋物線上一動點.改為是拋物線上的任一動點,其它條件不變,當以、、為頂點的四邊形為梯形時,直接寫出點的坐標.

查看答案和解析>>

同步練習冊答案