【題目】兩個長為2,寬為1的矩形ABCD和矩形EFGH如圖1所示擺放在直線l上,DE=2,將矩形ABCD繞點D順時針旋轉(zhuǎn)α角(0°<α<90°),將矩形EFGH繞點E逆時針旋轉(zhuǎn)相同的角度.在旋轉(zhuǎn)的過程中,利用圖2思考:當(dāng)矩形ABCD和矩形EFGH重合部分為正方形時,α=_____°.
【答案】45.
【解析】
由四邊形MFNC為正方形,而矩形ABCD繞點D順時針旋轉(zhuǎn)和矩形EFGH繞點E逆時針旋轉(zhuǎn)相同的角度.得到NF=NC,∠FNC=90°,則∠DNE=90°,ND=NE,得到∠NDE=∠NED=45°,所以∠ =180°-90°-45°=45°,可得答案.
∵四邊形MFNC為正方形,而矩形ABCD繞點D順時針旋轉(zhuǎn)和矩形EFGH繞點E逆時針旋轉(zhuǎn)相同的角度,
∴NF=NC,∠FNC=90°,
∴∠DNE=90°,ND=NE,
∴∠NDE=∠NED=45°,
∴∠ =180°-90°-45°=45°,
∴α=45°.
故答案是:45
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)下列四個圖都是由16個相同的小正方形拼成的正方形網(wǎng)格,其中的兩個小正方形被涂黑.請你在各圖中再將兩個空白的小正方形涂黑使各圖中涂黑部分組成的圖形成為軸對稱圖形(另兩個被涂黑的小正方形的位置必須全不相同),并畫出其對稱軸。
其對稱軸分別是: , , , 。
(2)請你發(fā)現(xiàn)如圖的規(guī)律,在空格上畫出第4個圖案。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠修建了甲、乙兩個水池,最大蓄水量都是1200立方米,如果甲池有水480立方米,乙池蓄滿水,甲池每小時進(jìn)水80立方米,乙池每小時放水100立方米.
(1)分別寫出甲、乙兩池的水量與時間的函數(shù)解析式;
(2)甲、乙兩池同時進(jìn)水、放水,經(jīng)過幾小時兩個水池內(nèi)的水一樣多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠A=45°,AB=4,AD=2,M是AD邊的中點,N是AB邊上一動點,將線段M繞點M逆時針旋轉(zhuǎn)90至MN′,連接N′B,N′C,則N′B+N′C的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題探究:
(1)如圖①所示是一個半徑為,高為4的圓柱體和它的側(cè)面展開圖,AB是圓柱的一條母線,一只螞蟻從A點出發(fā)沿圓柱的側(cè)面爬行一周到達(dá)B點,求螞蟻爬行的最短路程.(探究思路:將圓柱的側(cè)面沿母線AB剪開,它的側(cè)面展開圖如圖①中的矩形則螞蟻爬行的最短路程即為線段的長)
(2)如圖②所示是一個底面半徑為,母線長為4的圓錐和它的側(cè)面展開圖,PA是它的一條母線,一只螞蟻從A點出發(fā)沿圓錐的側(cè)面爬行一周后回到A點,求螞蟻爬行的最短路程.
(3)如圖③所示,在②的條件下,一只螞蟻從A點出發(fā)沿圓錐的側(cè)面爬行一周到達(dá)母線PA上的一點,求螞蟻爬行的最短路程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,點A、B的坐標(biāo)分別為,,P為y軸上B點下方一點, ,以AP為邊作等腰直角△APM,其中,點M落在第四象限.若直線MB與x軸交于點Q,則Q、M兩點中,點_________(填“Q”或“M”)的坐標(biāo)不隨m的變化而變化,該點的坐標(biāo)為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A(0,1),M(3,2),N(4,4).動點P從點A出發(fā),沿y軸以每秒1個單位長的速度向上移動,且過點P的直線l:y=-x+b也隨之移動,設(shè)移動時間為t秒.
(1)當(dāng)t=2時,則AP= ,此時點P的坐標(biāo)是 。
(2)當(dāng)t=3時,求過點P的直線l:y=-x+b的解析式?
(3)當(dāng)直線l:y=-x+b從經(jīng)過點M到點N時,求此時點P向上移動多少秒?
(4)點Q在x軸時,若S△ONQ=8時,請直按寫出點Q的坐標(biāo)是 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=α(0°<α≤90°),點F,G,P分別是DE,BC,CD的中點,連接PF,PG.
(1)如圖①,α=90°,點D在AB上,則∠FPG= °;
(2)如圖②,α=60°,點D不在AB上,判斷∠FPG的度數(shù),并證明你的結(jié)論;
(3)連接FG,若AB=5,AD=2,固定△ABC,將△ADE繞點A旋轉(zhuǎn),則PF長度的最大值為 ;PF長度的最小值為 ;
第27題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2017年5月,某縣突降暴雨,造成山體滑坡,橋梁垮塌,房屋大面積受損,該省民政廳急需將一批帳篷送往災(zāi)區(qū).現(xiàn)有甲、乙兩種貨車,已知甲種貨車比乙種貨車每輛車多裝20件帳篷,且甲種貨車裝運1 000件帳篷與乙種貨車裝運800件帳篷所用車輛相等.
(1)求甲、乙兩種貨車每輛車可裝多少件帳篷;
(2)如果這批帳篷有1 490件,用甲、乙兩種汽車共16輛裝運,甲種車輛剛好裝滿,乙種車輛最后一輛只裝了50件,其余裝滿,求甲、乙兩種貨車各有多少輛.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com