【題目】對于一元二次方程,下列說法:①若a+c=0,方程有兩個不等的實數(shù)根;②若方程有兩個不等的實數(shù)根,則方程也一定有兩個不等的實數(shù)根;③若c是方程的一個根,則一定有成立;④若m是方程的一個根,則一定有成立.其中正確地只有 ( )

A. ①② B. ②③ C. ③④ D. ①④

【答案】D

【解析】

①根據根的判別式即可作出判斷;

②方程有兩個不等的實數(shù)根,則,判斷方程也一定有兩個不等的實數(shù)根,只要證明方程的判別式的值大于0即可;

③若是方程的一個根,則代入即可作出判斷;

④若是方程的一個根,即方程有實根,判別式,結合是方程的根,代入一定成立,即可作出判斷.

①因為,,所以①、異號,所以,所以方程有兩個實數(shù)根;

②若方程有兩個不等的實數(shù)根,則,所以方程也一定有兩個不等的實數(shù)根;若,則方程為一次,沒有兩個不等實數(shù)根;

③若是方程的一個根,當時,不一定成立;

④若是方程的一個根,所以有,即

所以①④成立.

故選.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知,AB是⊙O的直徑,BC是⊙O的弦,⊙O的割線PDE垂直于AB于點F,交BC于點G,∠A=∠BCP

1)求證:PC是⊙O的切線;

2)若點C在劣弧AD上運動,其條件不變,問應再具備什么條件可使結論BG2=BF·BO成立,(要求畫出示意圖并說明理由).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲乙兩人勻速從同一地點到1500米處的圖書館看書,甲出發(fā)5分鐘后,乙以50/分的速度沿同一路線行走.設甲乙兩人相距s(米),甲行走的時間為t(分),s關于t的函數(shù)圖象的一部分如圖所示.下列結論正確的個數(shù)是( 。

1t5時,s150;(2t35時,s450;(3)甲的速度是30/分;(4t12.5時,s0

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,現(xiàn)有一張邊長為4的正方形紙片,點P為正方形AD邊上的一點(不與點A、點D重合)將正方形紙片折疊,使點B落在P處,點C落在G處,PGDCH,折痕為EF,連接BP、BH

1)求證:∠APB=∠BPH

2)當點P在邊AD上移動時,△PDH的周長是否發(fā)生變化?并證明你的結論;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面的文字后,回答問題:

甲、乙兩人同時解答題目:化簡并求值:,其中a=5甲、乙兩人的解答不同;

甲的解答是:

乙的解答是:

1  的解答是錯誤的.

2)錯誤的解答在于未能正確運用二次根式的性質:  

3)模仿上題解答:化簡并求值:,其中a=2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算

1

2

30--5

4-2.5-5.9

512--18+-7-15

6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC是一塊直角三角板,且C=90°,A=30°,現(xiàn)將圓心為點O的圓形紙片放置在三角板內部.

(1)如圖,當圓形紙片與兩直角邊AC、BC都相切時,試用直尺與圓規(guī)作出射線CO;(不寫作法與證明,保留作圖痕跡)

(2)如圖,將圓形紙片沿著三角板的內部邊緣滾動1周,回到起點位置時停止,若BC=9,圓形紙片的半徑為2,求圓心O運動的路徑長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】結合數(shù)軸與絕對值的知識回答下列問題:

(1)數(shù)軸上表示41的兩點之間的距離是 ;表示-32兩點之間的距離是 ;一般地,數(shù)軸上表示數(shù)m和數(shù)n的兩點之間的距離等于.如果表示數(shù)和-2的兩點之間的距離是3,那么= ;

(2)若數(shù)軸上表示數(shù)的點位于-42之間,+的值;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把幾個圖形拼成一個新的圖形,再通過兩種不同的方法計算同一個圖形的面積,可以得到一個等式,也可以求出一些不規(guī)則圖形的面積.

例如,由圖1,可得等式:(a+2b)(a+b=a2+3ab+2b2

(1)如圖2,將幾個面積不等的小正方形與小長方形拼成一個邊長為a+b+c的正方形,試用不同的形式表示這個大正方形的面積,你能發(fā)現(xiàn)什么結論?請用等式表示出來.

(2)利用(1)中所得到的結論,解決下面的問題: 已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值.

(3)如圖3,將兩個邊長分別為ab的正方形拼在一起,BC,G三點在同一直線上,連接BDBF.若這兩個正方形的邊長滿足a+b=10,ab=20,請求出陰影部分的面積.

查看答案和解析>>

同步練習冊答案