【題目】已知拋物線過點A(2,0),B(-1,0),與y軸交于點C,且OC=2.則這條拋物線的表達式為( )
A. y=x2-x-2
B. y=-x2+x+2
C. y=x2-x-2或y=-x2+x+2
D. y=-x2-x-2或y=x2+x+2
【答案】C
【解析】
.首先由OC=2,可知C點的坐標是(0,2)或(0,-2),然后分別把A、B、C三點的坐標代入函數(shù)的解析式,用待定系數(shù)法求出.注意本題有兩種情況.
拋物線與y軸交于點C,且OC=2,則C點的坐標是(0,2)或(0,-2),
當C點坐標是(0,2)時,圖象經(jīng)過三點,可以設(shè)函數(shù)解析式是:y=ax2+bx+c,
把(2,0),(-1,0),(0,2)分別代入解析式,
得到:,
解得:,
則函數(shù)解析式是:y=-x2+x+2;
同理,可以求得當C是(0,-2)時,解析式是:y=x2-x-2.
故這條拋物線的解析式為:y=-x2+x+2或y=x2-x-2.
故選:C
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點C是線段AB的中點,延長線段AB至點D,使BD=AB,延長AD至點E,使DE=AC.
(1)依題意畫出圖形(尺規(guī)作圖),則=_________(直接寫出結(jié)果);
(2)若DE=3,求AB的長;
(3)請寫出與BE長度相同的線段.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點D,DE⊥AD,交AB于點E,AE為⊙O的直徑.
(1)判斷BC與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)求證:△ABD∽△DBE;
(3)若cosB=,AE=4,求CD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】
(1)OA= cm,OB= cm.
(2)若點C是線段AO上一點,且滿足AC=CO+CB,求CO的長.
(3)若動點P、Q分別從A、B同時出發(fā),向右運動,點P的速度為2cm/s,點Q的速度為1cm/s,設(shè)運動時間為t(s),當點P與點Q重合時,P、Q兩點停止運動.
①當t為何值時,2OP﹣OQ=8.
②當點P經(jīng)過點O時,動點M從點O出發(fā),以3cm/s的速度也向右運動.當點M追上點Q后立即返回,以同樣的速度向點P運動,遇到點P后立即返回,又以同樣的速度向點Q運動,如此往返,直到點P、Q停止時,點M也停止運動.在此過程中,點M行駛的總路程為 cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下圖是一個橫斷面為拋物線形狀的拱橋,當水面寬4 m時,拱頂(拱橋洞的最高點)離水面2 m,當水面下降1 m時,水面的寬度為_____m.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示:圖象中所反映的過程是:小冬從家跑步去體育場,在那里鍛煉了一陣后,又去早餐店吃早餐,然后散步走回家.其中x軸表示時間,y軸表示小冬離家的距離.根據(jù)圖象提供的信息,下列說法正確的有________.
①.體育場離小冬家2.5千米 ②.小冬在體育場鍛煉了15分鐘
③.體育場離早餐店4千米 ④.小冬從早餐店回家的平均速度是3千米/小時
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,EF∥AD,∠1=∠2,∠BAC=70°.將求∠AGD的過程填寫完整.
解:因為EF∥AD
所以∠2= ( )
又因為∠1=∠2
所以∠1=∠3( )
所以AB∥ ( )
所以∠BAC+ =180°( )
因為∠BAC=70°
所以∠AGD= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)(為常數(shù)且)的圖象交于,兩點,與軸交于點.
(1)求此反比例函數(shù)的表達式;
(2)若點在軸上,且,求點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com